Abstract

We report the measurement of the 20ps ablation threshold of pure and Cr3+ doped LiSAF samples using a simple method that employs a single scan of the sample across a focused laser beam waist. During the scan, a profile is etched in the sample surface, and the measurement of the maximum transversal size of the profile and the pulse peak power determine the ablation threshold, without any further knowledge of the beam geometry. Also, it was possible to measure the depth of the ablation profile, to calculate its effective volume, and to identify that the maximum material removal rate per pulse does not occur at the beam waist, which is not intuitively expected.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375-386 (1974).
    [CrossRef]
  2. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071-3073(1994).
    [CrossRef]
  3. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 6803-6810 (1999).
    [CrossRef]
  4. W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146-3148(1996).
    [CrossRef]
  5. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307-1314 (1965).
  6. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076-4079(1998).
    [CrossRef]
  7. M. Uiberacker, T. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schroder, M. Lezius, K. L. Kompa, H. G. Muller, M. J. J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627-632 (2007).
    [CrossRef] [PubMed]
  8. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25-30 (2003).
    [CrossRef]
  9. M. Bass and D. W. Fradin, “Surface and bulk laser-damage statistics and the identification of intrinsic breakdown processes,” IEEE J. Quantum Electron. 9, 890-896 (1973).
    [CrossRef]
  10. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716-2722(1997).
    [CrossRef]
  11. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949-957 (2002).
    [CrossRef]
  12. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7, 196-198 (1982).
    [CrossRef] [PubMed]
  13. R. E. Samad and N. D. Vieira, “Geometrical method for determining the surface damage threshold for femtosecond laser pulses,” Laser Phys. 16, 336-339 (2006).
    [CrossRef]
  14. M. Ruiz, E. A. Barbosa, E. P. Maldonado, S. P. Morato, N. U. Wetter, N. D. Vieira, and S. L. Baldochi, “Zone melting growth of LiSrAlF6:Cr crystals for diode laser pumping,” J. Cryst. Growth 241, 177-182 (2002).
    [CrossRef]
  15. S. L. Baldochi and S. P. Morato, “Fluoride bulk crystals growth,” in Encyclopedia of Materials: Science and Technology, K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, and S. Mahajan, eds. (Pergamon, 2001), pp. 3200-3205.
    [CrossRef]
  16. VLOC, retrieved http://www.vloc.com/vlochome.htm.
  17. J. J. De Yoreo, L. J. Atherton, and D. H. Roberts, “Elimination of scattering centers from Cr:LiCaAlF6,” J. Cryst. Growth 113, 691-697 (1991).
    [CrossRef]

2007 (1)

M. Uiberacker, T. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schroder, M. Lezius, K. L. Kompa, H. G. Muller, M. J. J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627-632 (2007).
[CrossRef] [PubMed]

2006 (1)

R. E. Samad and N. D. Vieira, “Geometrical method for determining the surface damage threshold for femtosecond laser pulses,” Laser Phys. 16, 336-339 (2006).
[CrossRef]

2003 (1)

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25-30 (2003).
[CrossRef]

2002 (2)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949-957 (2002).
[CrossRef]

M. Ruiz, E. A. Barbosa, E. P. Maldonado, S. P. Morato, N. U. Wetter, N. D. Vieira, and S. L. Baldochi, “Zone melting growth of LiSrAlF6:Cr crystals for diode laser pumping,” J. Cryst. Growth 241, 177-182 (2002).
[CrossRef]

1999 (1)

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 6803-6810 (1999).
[CrossRef]

1998 (1)

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076-4079(1998).
[CrossRef]

1997 (1)

1996 (1)

W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146-3148(1996).
[CrossRef]

1994 (1)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071-3073(1994).
[CrossRef]

1991 (1)

J. J. De Yoreo, L. J. Atherton, and D. H. Roberts, “Elimination of scattering centers from Cr:LiCaAlF6,” J. Cryst. Growth 113, 691-697 (1991).
[CrossRef]

1982 (1)

1974 (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375-386 (1974).
[CrossRef]

1973 (1)

M. Bass and D. W. Fradin, “Surface and bulk laser-damage statistics and the identification of intrinsic breakdown processes,” IEEE J. Quantum Electron. 9, 890-896 (1973).
[CrossRef]

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307-1314 (1965).

Appl. Phys. B (1)

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25-30 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071-3073(1994).
[CrossRef]

W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146-3148(1996).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Bass and D. W. Fradin, “Surface and bulk laser-damage statistics and the identification of intrinsic breakdown processes,” IEEE J. Quantum Electron. 9, 890-896 (1973).
[CrossRef]

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375-386 (1974).
[CrossRef]

J. Appl. Phys. (1)

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 6803-6810 (1999).
[CrossRef]

J. Cryst. Growth (2)

M. Ruiz, E. A. Barbosa, E. P. Maldonado, S. P. Morato, N. U. Wetter, N. D. Vieira, and S. L. Baldochi, “Zone melting growth of LiSrAlF6:Cr crystals for diode laser pumping,” J. Cryst. Growth 241, 177-182 (2002).
[CrossRef]

J. J. De Yoreo, L. J. Atherton, and D. H. Roberts, “Elimination of scattering centers from Cr:LiCaAlF6,” J. Cryst. Growth 113, 691-697 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

R. E. Samad and N. D. Vieira, “Geometrical method for determining the surface damage threshold for femtosecond laser pulses,” Laser Phys. 16, 336-339 (2006).
[CrossRef]

Nature (1)

M. Uiberacker, T. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schroder, M. Lezius, K. L. Kompa, H. G. Muller, M. J. J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627-632 (2007).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Plasmas (1)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949-957 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076-4079(1998).
[CrossRef]

Sov. Phys. JETP (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307-1314 (1965).

Other (2)

S. L. Baldochi and S. P. Morato, “Fluoride bulk crystals growth,” in Encyclopedia of Materials: Science and Technology, K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, and S. Mahajan, eds. (Pergamon, 2001), pp. 3200-3205.
[CrossRef]

VLOC, retrieved http://www.vloc.com/vlochome.htm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagonal scan method: a) scheme of the experimental setup showing the sample movement and b) profile of the sample surface etching, ρ ( z ) , by the laser beam, w ( z ) for P 0 = 6 P crit . The vertical and longitudinal axes are normalized by the beam waist w 0 and confocal parameter z 0 , respectively.

Fig. 2
Fig. 2

a) Optical microscope picture of the profiles etched in the pure LiSAF sample surface at different energies and b) lateral picture of profile 1.

Fig. 3
Fig. 3

Cr:LiSAF ablation threshold dependence on the Cr 3 + concentration.

Fig. 4
Fig. 4

Effective volume ablated dependence on the sample surface along the ablation profile.

Tables (1)

Tables Icon

Table 1 Pure LiSAF Sample Fluence Ablation Thresholds

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I th = P 0 e π ρ max 2 0.117 P 0 ρ max 2 .
V eff ( z ) = ρ ( z ) 2 h ( z ) ,

Metrics