Abstract

Light beam scanning using a dispersive element and wavelength tuning is coupled with fiber-optic interferometry to realize a new surface measurement instrument. The instrument is capable of measuring nanoscale surface structures and form deviations. It features active vibration compensation and a small optical probe size that may be placed remotely from the main apparatus. Active vibration compensation is provided by the multiplexing of two interferometers with near common paths. Closed loop control of a mirror mounted on a piezoelectric transducer is used to keep the path length stable. Experiments were carried out to deduce the effectiveness of the vibration compensation and the ability to carry out a real measurement in the face of large environmental disturbance.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Vorburger and E. Teague, “Optical techniques for on-line measurement of surface topography,” Precis. Eng. 3, 61-83(1981).
    [CrossRef]
  2. T. Vorburger, E. Marx, and T. Lettieri, “Regimes of surface roughness measurable with light scattering,” Appl. Opt. 32, 3401-3415 (1993).
    [CrossRef] [PubMed]
  3. K. Creath, “Phase-shifting speckle interferometry,” Appl. Opt. 24, 3053-3058 (1985).
    [CrossRef] [PubMed]
  4. C. Tay, S. Wang, C. Quan, and H. Shang, “In situ surface roughness measurement using a laser scattering method,” Opt. Commun. 218, 1-10 (2003).
    [CrossRef]
  5. S. Kuwamura and I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36, 4473-4482 (1997).
    [CrossRef] [PubMed]
  6. A. Taguchi, T. Miyoshi, Y. Takaya, and S. Takahashi, “Optical 3D profilometer for in-process measurement of microsurface based on phase retrieval technique,” Precis. Eng. 28, 152-163(2004).
    [CrossRef]
  7. X. Jiang, K. Wang, and H. Martin, “Near common-path optical fiber interferometer for potentially fast on-line microscale-nanoscale surface measurement,” Opt. Lett. 31, 3603-3605(2006).
    [CrossRef] [PubMed]
  8. A. Simon and R. Ulrich, “Evolution of polarisation along a single-mode fibre,” Apl. Phys. Lett. 31, 517-520 (1977).
    [CrossRef]
  9. M. Johnson, “Poincaré representation of birefringent networks,” Appl. Opt. 20, 2075-2080 (1981).
    [CrossRef] [PubMed]
  10. A. Kersey, M. Marrone, and A. Dandridge, “Analysis of input-polarization-induced phase noise in interferometric fiber-optic sensors and its reduction using polarization scrambling,” J. Lightwave Technol. 8, 838-845 (1990).
    [CrossRef]
  11. K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics XXVI, E. Wolf, ed. (Elsevier, 1988), pp. 349-393.
    [CrossRef]
  12. P. S. Huang and S. Zhang, “Fast three-step phase-shifting algorithm,” Appl. Opt. 45, 5086-5091 (2006).
    [CrossRef] [PubMed]
  13. J. Schwider, R. Burow, K. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421-3432(1983).
    [CrossRef] [PubMed]
  14. K. M. Qian, F. J. Shu, and X. P. Wu, “Determination of the best phase step of the Carré algorithm in phase shifting interferometry,” Meas. Sci. Technol. 11, 1220-1223 (2000).
    [CrossRef]

2006 (2)

2004 (1)

A. Taguchi, T. Miyoshi, Y. Takaya, and S. Takahashi, “Optical 3D profilometer for in-process measurement of microsurface based on phase retrieval technique,” Precis. Eng. 28, 152-163(2004).
[CrossRef]

2003 (1)

C. Tay, S. Wang, C. Quan, and H. Shang, “In situ surface roughness measurement using a laser scattering method,” Opt. Commun. 218, 1-10 (2003).
[CrossRef]

2000 (1)

K. M. Qian, F. J. Shu, and X. P. Wu, “Determination of the best phase step of the Carré algorithm in phase shifting interferometry,” Meas. Sci. Technol. 11, 1220-1223 (2000).
[CrossRef]

1997 (1)

1993 (1)

1990 (1)

A. Kersey, M. Marrone, and A. Dandridge, “Analysis of input-polarization-induced phase noise in interferometric fiber-optic sensors and its reduction using polarization scrambling,” J. Lightwave Technol. 8, 838-845 (1990).
[CrossRef]

1985 (1)

1983 (1)

1981 (2)

M. Johnson, “Poincaré representation of birefringent networks,” Appl. Opt. 20, 2075-2080 (1981).
[CrossRef] [PubMed]

T. Vorburger and E. Teague, “Optical techniques for on-line measurement of surface topography,” Precis. Eng. 3, 61-83(1981).
[CrossRef]

1977 (1)

A. Simon and R. Ulrich, “Evolution of polarisation along a single-mode fibre,” Apl. Phys. Lett. 31, 517-520 (1977).
[CrossRef]

Apl. Phys. Lett. (1)

A. Simon and R. Ulrich, “Evolution of polarisation along a single-mode fibre,” Apl. Phys. Lett. 31, 517-520 (1977).
[CrossRef]

Appl. Opt. (6)

J. Lightwave Technol. (1)

A. Kersey, M. Marrone, and A. Dandridge, “Analysis of input-polarization-induced phase noise in interferometric fiber-optic sensors and its reduction using polarization scrambling,” J. Lightwave Technol. 8, 838-845 (1990).
[CrossRef]

Meas. Sci. Technol. (1)

K. M. Qian, F. J. Shu, and X. P. Wu, “Determination of the best phase step of the Carré algorithm in phase shifting interferometry,” Meas. Sci. Technol. 11, 1220-1223 (2000).
[CrossRef]

Opt. Commun. (1)

C. Tay, S. Wang, C. Quan, and H. Shang, “In situ surface roughness measurement using a laser scattering method,” Opt. Commun. 218, 1-10 (2003).
[CrossRef]

Opt. Lett. (1)

Precis. Eng. (2)

A. Taguchi, T. Miyoshi, Y. Takaya, and S. Takahashi, “Optical 3D profilometer for in-process measurement of microsurface based on phase retrieval technique,” Precis. Eng. 28, 152-163(2004).
[CrossRef]

T. Vorburger and E. Teague, “Optical techniques for on-line measurement of surface topography,” Precis. Eng. 3, 61-83(1981).
[CrossRef]

Other (1)

K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics XXVI, E. Wolf, ed. (Elsevier, 1988), pp. 349-393.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Attenuation of a 300 nm peak to peak induced disturbance.

Fig. 3
Fig. 3

(a) Frequency response of an uncompensated interferometer. (b) Frequency response of a compensated interferometer.

Fig. 4
Fig. 4

Effect of active vibration compensation on a 10 Hz full scale sinusoidal disturbance.

Fig. 5
Fig. 5

(a) Scanned step height with no disturbance. (b) Scanned step height with 750 nm peak to peak induced disturbance.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S = f Δ λ d cos β ,
V = { 1 - sin 2 θ sin 2 ( Ω r - s / 2 ) } 1 / 2 .
φ ( x ) = tan - 1 ( 3 I 2 ( x ) - 3 I 3 ( x ) - I 1 ( x ) + I 4 ( x ) ) ( I 1 ( x ) + I 2 ( x ) - I 3 ( x ) - I 4 ( x ) ) ( I 1 ( x ) - I 2 ( x ) - I 3 ( x ) + I 4 ( x ) ) 2 .
V out = V pk - lo + V pk - hi - V pk - lo 2 ( 1 + cos φ ) .

Metrics