Abstract

We have developed a silver-mirror-based multipass preamplifier for a broadband amplification in a terawatt Ti:sapphire laser. With the extremely broad bandwidth of the silver mirrors, a very broad amplified spectrum can be generated at an amplified energy of 4mJ; the amplified spectral width is 65nm at half maximum and 160nm at 25dB without any spectral shaping technique. Such a broad amplification can be explained well by the simulation that includes gain narrowing and gain saturation. Even after a further amplification to an energy of 600mJ, the amplified spectrum is broad enough to support an 20fs transform-limited pulse duration.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Zhou, G. Taft, C.-P. Huang, M. M. Murnane, and H. C. Kapteyn, “Pulse evolution in a broad-bandwidth Ti:sapphire laser,” Opt. Lett. 19, 1149-1151 (1994).
    [PubMed]
  2. C. P. J. Barty, C. L. Gordon III, and B. E. Lemoff, “Multiterawatt 30-fs Ti:sapphire laser system,” Opt. Lett. 19, 1442-1444 (1994).
    [CrossRef]
  3. J. Zhou, C.-P. Huang, M. M. Murnane, and H. C. Kapteyn, “Amplification of 26-fs, 2-TW pulses near the gain narrowing limit in Ti:sapphire,” Opt. Lett. 20, 64-66 (1995).
    [CrossRef] [PubMed]
  4. J. P. Chambaret, C. Le Blanc, G. Chériaux, P. Curley, G. Darpentigny, P. Rousseau, G. Hamoniaux, A. Antonetti, and F. Salin, “Generation of 25-TW, 32-fs pulses at 10 Hz, ” Opt. Lett. 21, 1921-1923 (1996).
    [CrossRef] [PubMed]
  5. C. P. J. Barty, T. Guo, C. Le Blanc, F. Raksi, C. Rose-Petruck, J. Squier, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, “Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification,” Opt. Lett. 21, 668-670 (1996).
    [CrossRef] [PubMed]
  6. K. Yamakawa, M. Aoyama, S. Matsuoka, H. Takuma, C. P. J. Barty, and D. Fittinghoff, “Generation of 16-fs, 10-TW pulses at a 10-Hz repetition rate with efficient Ti:sapphire amplifiers,” Opt. Lett. 23, 525-527 (1998).
    [CrossRef]
  7. H. Takada, M. Kakehata, and K. Torizuka, “High-repetition-rate 12 fs pulse amplification by a Ti:sapphire regenerative amplifier system,” Opt. Lett. 31, 1145-1147 (2006).
    [CrossRef] [PubMed]
  8. P. Georges, F. Estable, F. Salin, J. P. Poizat, P. Grangier, and A. Brun, “High-efficiency multipass Ti:sapphire amplifiers for a continuous-wave single-mode laser,” Opt. Lett. 16, 144-146(1991).
    [PubMed]
  9. Y. W. Lee, J. H. Yi, Y. H. Cha, Y. J. Rhee, B. C. Lee, and B. D. Yoo, “Numerical analysis of soft-aperture Kerr-lens mode locking in Ti:sapphire laser cavities by using nonlinear ABCD Matrices,” J. Korean Phys. Soc. 46, 1131-1136 (2005).
  10. G. Cheriaux, P. Rousseau, F. Salin, and J. P. Chambaret, “Aberration-free stretcher design for ultrashort-pulse amplification,” Opt. Lett. 21, 414-416 (1996).
    [CrossRef] [PubMed]
  11. C. Le Blanc, P. Curley, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti:sapphire amplifiers,” Opt. Commun. 131, 391-398 (1996).
    [CrossRef]
  12. Y. H. Cha, Y. I. Kang, and C. H. Nam, “Generation of a broad amplified spectrum in a femtosecond terawatt Ti:sapphire laser by a long-wavelength injection method,” J. Opt. Soc Am. B 16, 1220-1223 (1999).
    [CrossRef]
  13. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125-133 (1986).
    [CrossRef]
  14. Y. W. Lee, J. H. Yi, Y. H. Cha, S. M. Nam, J. M. Han, Y. U. Jeong, Y. J. Rhee, B. C. Lee, and B. D. Yoo, “Development of a 10-TW, 27-fs Ti:sapphire laser system at KAERI,” J. Korean Phys. Soc. 49, 412-416 (2006).

2006 (2)

H. Takada, M. Kakehata, and K. Torizuka, “High-repetition-rate 12 fs pulse amplification by a Ti:sapphire regenerative amplifier system,” Opt. Lett. 31, 1145-1147 (2006).
[CrossRef] [PubMed]

Y. W. Lee, J. H. Yi, Y. H. Cha, S. M. Nam, J. M. Han, Y. U. Jeong, Y. J. Rhee, B. C. Lee, and B. D. Yoo, “Development of a 10-TW, 27-fs Ti:sapphire laser system at KAERI,” J. Korean Phys. Soc. 49, 412-416 (2006).

2005 (1)

Y. W. Lee, J. H. Yi, Y. H. Cha, Y. J. Rhee, B. C. Lee, and B. D. Yoo, “Numerical analysis of soft-aperture Kerr-lens mode locking in Ti:sapphire laser cavities by using nonlinear ABCD Matrices,” J. Korean Phys. Soc. 46, 1131-1136 (2005).

1999 (1)

Y. H. Cha, Y. I. Kang, and C. H. Nam, “Generation of a broad amplified spectrum in a femtosecond terawatt Ti:sapphire laser by a long-wavelength injection method,” J. Opt. Soc Am. B 16, 1220-1223 (1999).
[CrossRef]

1998 (1)

1996 (4)

1995 (1)

1994 (2)

1991 (1)

1986 (1)

J. Korean Phys. Soc. (2)

Y. W. Lee, J. H. Yi, Y. H. Cha, Y. J. Rhee, B. C. Lee, and B. D. Yoo, “Numerical analysis of soft-aperture Kerr-lens mode locking in Ti:sapphire laser cavities by using nonlinear ABCD Matrices,” J. Korean Phys. Soc. 46, 1131-1136 (2005).

Y. W. Lee, J. H. Yi, Y. H. Cha, S. M. Nam, J. M. Han, Y. U. Jeong, Y. J. Rhee, B. C. Lee, and B. D. Yoo, “Development of a 10-TW, 27-fs Ti:sapphire laser system at KAERI,” J. Korean Phys. Soc. 49, 412-416 (2006).

J. Opt. Soc Am. B (1)

Y. H. Cha, Y. I. Kang, and C. H. Nam, “Generation of a broad amplified spectrum in a femtosecond terawatt Ti:sapphire laser by a long-wavelength injection method,” J. Opt. Soc Am. B 16, 1220-1223 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

C. Le Blanc, P. Curley, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti:sapphire amplifiers,” Opt. Commun. 131, 391-398 (1996).
[CrossRef]

Opt. Lett. (9)

G. Cheriaux, P. Rousseau, F. Salin, and J. P. Chambaret, “Aberration-free stretcher design for ultrashort-pulse amplification,” Opt. Lett. 21, 414-416 (1996).
[CrossRef] [PubMed]

J. Zhou, G. Taft, C.-P. Huang, M. M. Murnane, and H. C. Kapteyn, “Pulse evolution in a broad-bandwidth Ti:sapphire laser,” Opt. Lett. 19, 1149-1151 (1994).
[PubMed]

C. P. J. Barty, C. L. Gordon III, and B. E. Lemoff, “Multiterawatt 30-fs Ti:sapphire laser system,” Opt. Lett. 19, 1442-1444 (1994).
[CrossRef]

J. Zhou, C.-P. Huang, M. M. Murnane, and H. C. Kapteyn, “Amplification of 26-fs, 2-TW pulses near the gain narrowing limit in Ti:sapphire,” Opt. Lett. 20, 64-66 (1995).
[CrossRef] [PubMed]

J. P. Chambaret, C. Le Blanc, G. Chériaux, P. Curley, G. Darpentigny, P. Rousseau, G. Hamoniaux, A. Antonetti, and F. Salin, “Generation of 25-TW, 32-fs pulses at 10 Hz, ” Opt. Lett. 21, 1921-1923 (1996).
[CrossRef] [PubMed]

C. P. J. Barty, T. Guo, C. Le Blanc, F. Raksi, C. Rose-Petruck, J. Squier, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, “Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification,” Opt. Lett. 21, 668-670 (1996).
[CrossRef] [PubMed]

K. Yamakawa, M. Aoyama, S. Matsuoka, H. Takuma, C. P. J. Barty, and D. Fittinghoff, “Generation of 16-fs, 10-TW pulses at a 10-Hz repetition rate with efficient Ti:sapphire amplifiers,” Opt. Lett. 23, 525-527 (1998).
[CrossRef]

H. Takada, M. Kakehata, and K. Torizuka, “High-repetition-rate 12 fs pulse amplification by a Ti:sapphire regenerative amplifier system,” Opt. Lett. 31, 1145-1147 (2006).
[CrossRef] [PubMed]

P. Georges, F. Estable, F. Salin, J. P. Poizat, P. Grangier, and A. Brun, “High-efficiency multipass Ti:sapphire amplifiers for a continuous-wave single-mode laser,” Opt. Lett. 16, 144-146(1991).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the silver-mirror-based preamplifier.

Fig. 2
Fig. 2

Transmitted spectrum through the preamplifier without amplification (solid curve). The input spectrum (dashed curve) is almost identical to the transmitted one.

Fig. 3
Fig. 3

Input spectra with various bandwidths. The bandwidth of each input spectrum is adjusted to (a) 160, (b) 140, (c) 120, and (d)  100 nm , respectively.

Fig. 4
Fig. 4

Amplified spectra at the preamplifier with various input spectra [(a) linear scale, (b) log scale]. The input spectrum for each amplified spectrum is shown in Fig. 3. The transform-limited pulse duration calculated from each amplified spectra is displayed in (a).

Fig. 5
Fig. 5

Amplified spectra at the preamplifier with various amplified energies [(a) experimental and (b) simulation results].

Fig. 6
Fig. 6

(a) Amplified spectrum after the final amplifier and (b) measured and transform-limited autocorrelation signals. The transform-limited autocorrelation was calculated based on the measured amplified spectrum.

Metrics