Abstract

We propose a microfluidic method to measure the refractive index of liquids. This method is based on the dynamic focusing by a capillary when liquids with different refractive indexes are inserted into it. Fabrication of such a refractometer has been done by encapsulating two fibers and a capillary. A calibration method is proposed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Longhurst, Geometrical and Physical Optics (Longman, 1973).
  2. P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractomer,” Appl. Phys. Lett. 88, 093513 (2006).
    [CrossRef]
  3. O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators, A 78, 149-150 (1999).
    [CrossRef]
  4. S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, “Microfluidic sensor based on integrated optical hollow waveguides,” Opt. Lett. 29, 1894-1896 (2004).
    [CrossRef] [PubMed]
  5. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093-1095 (2004).
    [CrossRef] [PubMed]
  6. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30, 1273-1275 (2005).
    [CrossRef] [PubMed]
  7. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888-7893(2007).
    [CrossRef] [PubMed]
  8. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1975).
  9. G. Vdovin, S. Middelhoek, and P. M. Sarro, “Technology and applications of micromachined silicon adaptive mirrors,” Opt. Eng. 36, 1382-1390 (1997).
    [CrossRef]
  10. www.varioptic.com. They describe a liquid lens based on electrowetting phenomenon.
  11. S. Esposito, E. Pinna, A. Puglisi, A. Tosí, and P. Stefanini, “Pyramid sensor for segmented mirror alignment,” Opt. Lett. 30, 2572-2574 (2005).
    [CrossRef] [PubMed]
  12. R. Duarte-Quiroga and S. Calixto, “Dynamical optical microelements on dye sensitized gels,” Appl. Opt. 39, 3948-3954(2000).
    [CrossRef]
  13. S. Calixto, “Relief gratings and microlenses fabricated with silicone,” Appl. Opt. 46, 5204-5209 (2007).
    [CrossRef] [PubMed]
  14. R. C. Weast, CRC Handbook of Chemistry and Physics, 65th ed. (CRC Press, 1985).
  15. Cargille Laboratories Inc., 55 Commerce Road, Cedar Grove, N.J. 07009, USA.
  16. QPhotonics, LLC, 3830 Packard Road, Suite 380, Ann Arbor, Mich. 48108, USA.

2007 (2)

2006 (1)

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractomer,” Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

2005 (2)

2004 (2)

2000 (1)

1999 (1)

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators, A 78, 149-150 (1999).
[CrossRef]

1997 (1)

G. Vdovin, S. Middelhoek, and P. M. Sarro, “Technology and applications of micromachined silicon adaptive mirrors,” Opt. Eng. 36, 1382-1390 (1997).
[CrossRef]

Bernini, R.

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1975).

Brambilla, G.

Brittain, S. T.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators, A 78, 149-150 (1999).
[CrossRef]

Calixto, S.

Campopiano, S.

Chow, E.

Cronin-Golomb, M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractomer,” Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Domachuk, P.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractomer,” Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Duarte-Quiroga, R.

Duffy, D. C.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators, A 78, 149-150 (1999).
[CrossRef]

Eggleton, B. J.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractomer,” Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Esposito, S.

Girolami, G.

Grot, A.

Horak, P.

Littler, I. C. M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractomer,” Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Longhurst, R. S.

R. S. Longhurst, Geometrical and Physical Optics (Longman, 1973).

Mansuripur, M.

Middelhoek, S.

G. Vdovin, S. Middelhoek, and P. M. Sarro, “Technology and applications of micromachined silicon adaptive mirrors,” Opt. Eng. 36, 1382-1390 (1997).
[CrossRef]

Mirkarimi, L. W.

Peyghambarian, N.

Pinna, E.

Polynkin, A.

Polynkin, P.

Puglisi, A.

Rogers, J. A.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators, A 78, 149-150 (1999).
[CrossRef]

Sarro, P. M.

S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, “Microfluidic sensor based on integrated optical hollow waveguides,” Opt. Lett. 29, 1894-1896 (2004).
[CrossRef] [PubMed]

G. Vdovin, S. Middelhoek, and P. M. Sarro, “Technology and applications of micromachined silicon adaptive mirrors,” Opt. Eng. 36, 1382-1390 (1997).
[CrossRef]

Schueller, O. J. A.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators, A 78, 149-150 (1999).
[CrossRef]

Sigalas, M.

Stefanini, P.

Tosí, A.

Vdovin, G.

G. Vdovin, S. Middelhoek, and P. M. Sarro, “Technology and applications of micromachined silicon adaptive mirrors,” Opt. Eng. 36, 1382-1390 (1997).
[CrossRef]

Weast, R. C.

R. C. Weast, CRC Handbook of Chemistry and Physics, 65th ed. (CRC Press, 1985).

Whitesides, G. M.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators, A 78, 149-150 (1999).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1975).

Xu, F.

Zeni, L.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractomer,” Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Opt. Eng. (1)

G. Vdovin, S. Middelhoek, and P. M. Sarro, “Technology and applications of micromachined silicon adaptive mirrors,” Opt. Eng. 36, 1382-1390 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Sens. Actuators, A (1)

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators, A 78, 149-150 (1999).
[CrossRef]

Other (6)

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1975).

R. S. Longhurst, Geometrical and Physical Optics (Longman, 1973).

www.varioptic.com. They describe a liquid lens based on electrowetting phenomenon.

R. C. Weast, CRC Handbook of Chemistry and Physics, 65th ed. (CRC Press, 1985).

Cargille Laboratories Inc., 55 Commerce Road, Cedar Grove, N.J. 07009, USA.

QPhotonics, LLC, 3830 Packard Road, Suite 380, Ann Arbor, Mich. 48108, USA.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Behavior of focal distance as a function of lens refractive index calculated with the lens maker’s equation. It was supposed that the lens was immersed in a medium with a 1.4126 refrac tive index.

Fig. 2
Fig. 2

Diagrams, given by an optical design program, of a capillary lens focusing collimated light. Parameter in the diagrams is the refractive index of the lens. For parameters of the lens see text.

Fig. 3
Fig. 3

Scheme showing the layout of the fibers and the capillary to form the capillary refractometer. (Not to scale.)

Fig. 4
Fig. 4

Diagrams, given by an optical design program, of a capillary lens that focus light from a fiber that is 1.98 mm far from the capillary. Parameter in the diagrams is the refractive index of the liquid that fills the capillary. Diameter for each emerging beam is shown.

Fig. 5
Fig. 5

Cross section of the capillary used in the experiments. Outside diameter is 1.23 mm .

Fig. 6
Fig. 6

Capillary refractometer made with two fibers and a capillary. Dimension of the plastic box is about 11 mm × 11 mm × 8 mm . At measurement time liquids are inserted into the capillary.

Fig. 7
Fig. 7

Calibration curve. Squares show the intensity of light, collected by the 100 / 125 fiber, versus the refractive index of the liquid in the capillary. Solid curve shows the interpolated curve. Asterisk shows the test liquid.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 / f = ( n l n m ) ( ( 1 / r 1 ) ( 1 / r 2 ) ) .

Metrics