Abstract

To maintain the same beam quality as that of a single emitter and to be close to diffraction limit, we have combined a phase corrected array, emitting at λ=975nm, coherently using the Talbot effect. First, to improve the beam quality of the array, a phase correcting system was added. The FWHM divergences of the array (which is approximately the same as that of the single emitter since the emitters within the array are not optically coupled to each other) were reduced from 34° to 0.17° in the fast axis and from 3.5° to 0.7° in the slow axis at 6A. Then, to be close to the diffraction limit, we have combined this corrected array coherently using the Talbot effect. We have obtained a quasi-monolobe slow axis far field profile for the in-phase mode with a central peak divergence of only 0.27° at 1.5A, 315mW under cw operation, and of only 0.20° at 2.5A, 787mW under pulsed operation. To our knowledge, this is the first demonstration of coherent coupling of a corrected tapered laser diode array in an external Talbot cavity.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Krakowski, S. C. Auzanneau, F. Berlie, M. Calligaro, Y. Robert, O. Parillaud, and M. Lecomte, “1 W, high brightness, index guided tapered laser at 980 nm using Al-free active region materials,” Electron. Lett. 39, 1122-1123 (2003).
    [CrossRef]
  2. J. F. Monjardin, K. M. Nowak, H. J. Baker, and D. R. Hall, “Correction of beam errors in high power laser diode bars and stacks,” Opt. Express 14, 8178-8183 (2006).
    [CrossRef] [PubMed]
  3. J. K. Butler, D. E. Ackley, and D. Botez, “Coupled-mode analysis of phase-locked injection laser arrays,” Appl. Phys. Lett. 44, 293-295 (1984).
    [CrossRef]
  4. V. Diadiuk, Z. L. Liau, J. N. Walpole, J. Caunt, and R. Williamson, “External-cavity operation of InGaAsP buried heterostructure laser array,” Appl. Phys. Lett. 55, 2161-2163 (1989).
    [CrossRef]
  5. J. R. Leger, G. J. Swanson, and W. B. Veldkamp, “Coherent beam addition of GaAlAs lasers by binary phase gratings,” Appl. Phys. Lett. 48, 888-890 (1986).
    [CrossRef]
  6. D. Mehuys, K. Mitsunaga, L. Eng, W. K. Marshall, and A. Yariv, “Supermode control in diffraction-coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165-1167 (1988).
    [CrossRef]
  7. J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771-1773 (1988).
    [CrossRef]
  8. G. L. Bourdet and G. Lescroart, “Phase coupled CO2 laser array performances and lossless beam shaping,” Proc. SPIE 3549, 57-67 (1998).
    [CrossRef]
  9. Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron. 36, 607-614 (2000).
    [CrossRef]
  10. A. F. Glova, “Phase locking of optically coupled lasers,” Quantum Electron. 33, 283-306 (2003).
    [CrossRef]

2006 (1)

2003 (2)

M. Krakowski, S. C. Auzanneau, F. Berlie, M. Calligaro, Y. Robert, O. Parillaud, and M. Lecomte, “1 W, high brightness, index guided tapered laser at 980 nm using Al-free active region materials,” Electron. Lett. 39, 1122-1123 (2003).
[CrossRef]

A. F. Glova, “Phase locking of optically coupled lasers,” Quantum Electron. 33, 283-306 (2003).
[CrossRef]

2000 (1)

Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron. 36, 607-614 (2000).
[CrossRef]

1998 (1)

G. L. Bourdet and G. Lescroart, “Phase coupled CO2 laser array performances and lossless beam shaping,” Proc. SPIE 3549, 57-67 (1998).
[CrossRef]

1989 (1)

V. Diadiuk, Z. L. Liau, J. N. Walpole, J. Caunt, and R. Williamson, “External-cavity operation of InGaAsP buried heterostructure laser array,” Appl. Phys. Lett. 55, 2161-2163 (1989).
[CrossRef]

1988 (2)

D. Mehuys, K. Mitsunaga, L. Eng, W. K. Marshall, and A. Yariv, “Supermode control in diffraction-coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165-1167 (1988).
[CrossRef]

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771-1773 (1988).
[CrossRef]

1986 (1)

J. R. Leger, G. J. Swanson, and W. B. Veldkamp, “Coherent beam addition of GaAlAs lasers by binary phase gratings,” Appl. Phys. Lett. 48, 888-890 (1986).
[CrossRef]

1984 (1)

J. K. Butler, D. E. Ackley, and D. Botez, “Coupled-mode analysis of phase-locked injection laser arrays,” Appl. Phys. Lett. 44, 293-295 (1984).
[CrossRef]

Ackley, D. E.

J. K. Butler, D. E. Ackley, and D. Botez, “Coupled-mode analysis of phase-locked injection laser arrays,” Appl. Phys. Lett. 44, 293-295 (1984).
[CrossRef]

Auzanneau, S. C.

M. Krakowski, S. C. Auzanneau, F. Berlie, M. Calligaro, Y. Robert, O. Parillaud, and M. Lecomte, “1 W, high brightness, index guided tapered laser at 980 nm using Al-free active region materials,” Electron. Lett. 39, 1122-1123 (2003).
[CrossRef]

Baker, H. J.

Berlie, F.

M. Krakowski, S. C. Auzanneau, F. Berlie, M. Calligaro, Y. Robert, O. Parillaud, and M. Lecomte, “1 W, high brightness, index guided tapered laser at 980 nm using Al-free active region materials,” Electron. Lett. 39, 1122-1123 (2003).
[CrossRef]

Botez, D.

J. K. Butler, D. E. Ackley, and D. Botez, “Coupled-mode analysis of phase-locked injection laser arrays,” Appl. Phys. Lett. 44, 293-295 (1984).
[CrossRef]

Bourdet, G. L.

G. L. Bourdet and G. Lescroart, “Phase coupled CO2 laser array performances and lossless beam shaping,” Proc. SPIE 3549, 57-67 (1998).
[CrossRef]

Butler, J. K.

J. K. Butler, D. E. Ackley, and D. Botez, “Coupled-mode analysis of phase-locked injection laser arrays,” Appl. Phys. Lett. 44, 293-295 (1984).
[CrossRef]

Calligaro, M.

M. Krakowski, S. C. Auzanneau, F. Berlie, M. Calligaro, Y. Robert, O. Parillaud, and M. Lecomte, “1 W, high brightness, index guided tapered laser at 980 nm using Al-free active region materials,” Electron. Lett. 39, 1122-1123 (2003).
[CrossRef]

Caunt, J.

V. Diadiuk, Z. L. Liau, J. N. Walpole, J. Caunt, and R. Williamson, “External-cavity operation of InGaAsP buried heterostructure laser array,” Appl. Phys. Lett. 55, 2161-2163 (1989).
[CrossRef]

Diadiuk, V.

V. Diadiuk, Z. L. Liau, J. N. Walpole, J. Caunt, and R. Williamson, “External-cavity operation of InGaAsP buried heterostructure laser array,” Appl. Phys. Lett. 55, 2161-2163 (1989).
[CrossRef]

Eng, L.

D. Mehuys, K. Mitsunaga, L. Eng, W. K. Marshall, and A. Yariv, “Supermode control in diffraction-coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165-1167 (1988).
[CrossRef]

Glova, A. F.

A. F. Glova, “Phase locking of optically coupled lasers,” Quantum Electron. 33, 283-306 (2003).
[CrossRef]

Hall, D. R.

Kannari, F.

Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron. 36, 607-614 (2000).
[CrossRef]

Kono, Y.

Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron. 36, 607-614 (2000).
[CrossRef]

Krakowski, M.

M. Krakowski, S. C. Auzanneau, F. Berlie, M. Calligaro, Y. Robert, O. Parillaud, and M. Lecomte, “1 W, high brightness, index guided tapered laser at 980 nm using Al-free active region materials,” Electron. Lett. 39, 1122-1123 (2003).
[CrossRef]

Lecomte, M.

M. Krakowski, S. C. Auzanneau, F. Berlie, M. Calligaro, Y. Robert, O. Parillaud, and M. Lecomte, “1 W, high brightness, index guided tapered laser at 980 nm using Al-free active region materials,” Electron. Lett. 39, 1122-1123 (2003).
[CrossRef]

Leger, J. R.

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771-1773 (1988).
[CrossRef]

J. R. Leger, G. J. Swanson, and W. B. Veldkamp, “Coherent beam addition of GaAlAs lasers by binary phase gratings,” Appl. Phys. Lett. 48, 888-890 (1986).
[CrossRef]

Lescroart, G.

G. L. Bourdet and G. Lescroart, “Phase coupled CO2 laser array performances and lossless beam shaping,” Proc. SPIE 3549, 57-67 (1998).
[CrossRef]

Liau, Z. L.

V. Diadiuk, Z. L. Liau, J. N. Walpole, J. Caunt, and R. Williamson, “External-cavity operation of InGaAsP buried heterostructure laser array,” Appl. Phys. Lett. 55, 2161-2163 (1989).
[CrossRef]

Marshall, W. K.

D. Mehuys, K. Mitsunaga, L. Eng, W. K. Marshall, and A. Yariv, “Supermode control in diffraction-coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165-1167 (1988).
[CrossRef]

Mehuys, D.

D. Mehuys, K. Mitsunaga, L. Eng, W. K. Marshall, and A. Yariv, “Supermode control in diffraction-coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165-1167 (1988).
[CrossRef]

Mitsunaga, K.

D. Mehuys, K. Mitsunaga, L. Eng, W. K. Marshall, and A. Yariv, “Supermode control in diffraction-coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165-1167 (1988).
[CrossRef]

Monjardin, J. F.

Nowak, K. M.

Parillaud, O.

M. Krakowski, S. C. Auzanneau, F. Berlie, M. Calligaro, Y. Robert, O. Parillaud, and M. Lecomte, “1 W, high brightness, index guided tapered laser at 980 nm using Al-free active region materials,” Electron. Lett. 39, 1122-1123 (2003).
[CrossRef]

Robert, Y.

M. Krakowski, S. C. Auzanneau, F. Berlie, M. Calligaro, Y. Robert, O. Parillaud, and M. Lecomte, “1 W, high brightness, index guided tapered laser at 980 nm using Al-free active region materials,” Electron. Lett. 39, 1122-1123 (2003).
[CrossRef]

Scott, M. L.

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771-1773 (1988).
[CrossRef]

Swanson, G. J.

J. R. Leger, G. J. Swanson, and W. B. Veldkamp, “Coherent beam addition of GaAlAs lasers by binary phase gratings,” Appl. Phys. Lett. 48, 888-890 (1986).
[CrossRef]

Takeoka, M.

Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron. 36, 607-614 (2000).
[CrossRef]

Uchida, A.

Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron. 36, 607-614 (2000).
[CrossRef]

Uto, K.

Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron. 36, 607-614 (2000).
[CrossRef]

Veldkamp, W. B.

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771-1773 (1988).
[CrossRef]

J. R. Leger, G. J. Swanson, and W. B. Veldkamp, “Coherent beam addition of GaAlAs lasers by binary phase gratings,” Appl. Phys. Lett. 48, 888-890 (1986).
[CrossRef]

Walpole, J. N.

V. Diadiuk, Z. L. Liau, J. N. Walpole, J. Caunt, and R. Williamson, “External-cavity operation of InGaAsP buried heterostructure laser array,” Appl. Phys. Lett. 55, 2161-2163 (1989).
[CrossRef]

Williamson, R.

V. Diadiuk, Z. L. Liau, J. N. Walpole, J. Caunt, and R. Williamson, “External-cavity operation of InGaAsP buried heterostructure laser array,” Appl. Phys. Lett. 55, 2161-2163 (1989).
[CrossRef]

Yariv, A.

D. Mehuys, K. Mitsunaga, L. Eng, W. K. Marshall, and A. Yariv, “Supermode control in diffraction-coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165-1167 (1988).
[CrossRef]

Appl. Phys. Lett. (5)

J. K. Butler, D. E. Ackley, and D. Botez, “Coupled-mode analysis of phase-locked injection laser arrays,” Appl. Phys. Lett. 44, 293-295 (1984).
[CrossRef]

V. Diadiuk, Z. L. Liau, J. N. Walpole, J. Caunt, and R. Williamson, “External-cavity operation of InGaAsP buried heterostructure laser array,” Appl. Phys. Lett. 55, 2161-2163 (1989).
[CrossRef]

J. R. Leger, G. J. Swanson, and W. B. Veldkamp, “Coherent beam addition of GaAlAs lasers by binary phase gratings,” Appl. Phys. Lett. 48, 888-890 (1986).
[CrossRef]

D. Mehuys, K. Mitsunaga, L. Eng, W. K. Marshall, and A. Yariv, “Supermode control in diffraction-coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165-1167 (1988).
[CrossRef]

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771-1773 (1988).
[CrossRef]

Electron. Lett. (1)

M. Krakowski, S. C. Auzanneau, F. Berlie, M. Calligaro, Y. Robert, O. Parillaud, and M. Lecomte, “1 W, high brightness, index guided tapered laser at 980 nm using Al-free active region materials,” Electron. Lett. 39, 1122-1123 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron. 36, 607-614 (2000).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

G. L. Bourdet and G. Lescroart, “Phase coupled CO2 laser array performances and lossless beam shaping,” Proc. SPIE 3549, 57-67 (1998).
[CrossRef]

Quantum Electron. (1)

A. F. Glova, “Phase locking of optically coupled lasers,” Quantum Electron. 33, 283-306 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Al-free active region laser structure.

Fig. 2
Fig. 2

Geometry of the index-guided tapered laser.

Fig. 3
Fig. 3

Geometry of the array of ten tapered lasers.

Fig. 4
Fig. 4

Corrected array of tapered laser diodes.

Fig. 5
Fig. 5

Vertical far field profile of the corrected array.

Fig. 6
Fig. 6

Horizontal far field profile of the corrected array.

Fig. 7
Fig. 7

Power characteristics of the incoherent and coherent emissions under cw operation.

Fig. 8
Fig. 8

Far field at 900 m A (no tilt).

Fig. 9
Fig. 9

Far field at 900 m A ( α = λ / 2 d ).

Fig. 10
Fig. 10

Far field at 1.5 A (no tilt).

Fig. 11
Fig. 11

Far field at 1.5 A ( α = λ / 2 d ).

Fig. 12
Fig. 12

Far field at 1.5 A (pulsed operation, in-phase mode).

Fig. 13
Fig. 13

Far field at 2 A (pulsed operation, in-phase mode).

Fig. 14
Fig. 14

Far field at 2.5 A (pulsed operation, in-phase mode).

Fig. 15
Fig. 15

Far field at 3 A (pulsed operation, in-phase mode).

Fig. 16
Fig. 16

Far field at 1.5 A (pulsed operation, out-of-phase mode).

Fig. 17
Fig. 17

Far field at 2 A (pulsed operation, out-of-phase mode).

Fig. 18
Fig. 18

Far field at 2.5 A (pulsed operation, out-of-phase mode).

Fig. 19
Fig. 19

Far field at 3 A (pulsed operation, out-of-phase mode).

Metrics