Abstract

A major problem when imaging at depth within a biological sample in confocal or nonlinear microscopy is the introduction of sample induced aberrations. Adaptive optical systems can provide a technique to compensate for these sample aberrations and often iterative optimizations are used to improve on a particular parameter of the image (known as the fitness parameter). In this investigation, using a deformable membrane mirror as the adaptive optic element, we examine the effectiveness of a number of fitness parameters, when used with a genetic algorithm, at determining the optimal mirror shape required to compensate for sample induced aberrations. These fitness parameters are compared in terms of the number of mirror changes required to achieve optimization and the final axial resolution of the optical system. The effect that optimizing each fitness parameter has on the lateral and axial point-spread function is also examined.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson and A. R. Carlini, “The effect of aberrations on the axial response of confocal imaging systems,” J. Microsc. 154, 243-256 (1989).
    [CrossRef]
  2. D. Wan, M. Rajadhyasksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33-1.40,” J. Microsc. 197, 274-284 (2000).
    [CrossRef] [PubMed]
  3. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229-236 (1953).
    [CrossRef]
  4. M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two photon microscope,” J. Microsc. 200, 105-108 (2000).
    [CrossRef] [PubMed]
  5. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched-media,” J. Microsc. 192, 90-98 (1998).
    [CrossRef]
  6. M. Schwertner, M. J. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540-6552 (2004).
    [CrossRef] [PubMed]
  7. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in muliphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
    [CrossRef] [PubMed]
  8. P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123-1130 (2003).
    [CrossRef] [PubMed]
  9. A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. Valentine, and J. M. Girkin, “Active aberration correction in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67, 36-44 (2005).
    [CrossRef] [PubMed]
  10. G. J. Brakenhoff, G. W. Wurpel, K. Jalink, L. Oomen, L. Brocks, and J. M. Zwier, “Characterization of sectioning fluorescence microscopy with thin uniform fluorescent layers: sectioned imaging property or SIPcharts,” J. Microsc. 219, 122-132 (2005).
    [CrossRef] [PubMed]
  11. G. Vicidomini, M. Schneider, P. Bianchini, S. Krol, T. Szellas, and A. Diaspro, “Characterization of uniform ultrathin layer for z-response measurements in three-dimensional section fluorescence microscopy,” J. Microsc. 225, 88-95 (2007).
    [CrossRef] [PubMed]
  12. W. Lubeigt, G. Valentine, J. Girkin, E. Bente, and D. Burns, “Active transverse mode control and optimization of all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10, 550-555 (2002).
    [PubMed]
  13. R. L. Zucker, “Confocal microscopy system performance: axial resolution,” Microscopy Today 12, 38-40 (2004).

2007

G. Vicidomini, M. Schneider, P. Bianchini, S. Krol, T. Szellas, and A. Diaspro, “Characterization of uniform ultrathin layer for z-response measurements in three-dimensional section fluorescence microscopy,” J. Microsc. 225, 88-95 (2007).
[CrossRef] [PubMed]

2005

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. Valentine, and J. M. Girkin, “Active aberration correction in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67, 36-44 (2005).
[CrossRef] [PubMed]

G. J. Brakenhoff, G. W. Wurpel, K. Jalink, L. Oomen, L. Brocks, and J. M. Zwier, “Characterization of sectioning fluorescence microscopy with thin uniform fluorescent layers: sectioned imaging property or SIPcharts,” J. Microsc. 219, 122-132 (2005).
[CrossRef] [PubMed]

2004

2003

2002

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in muliphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
[CrossRef] [PubMed]

W. Lubeigt, G. Valentine, J. Girkin, E. Bente, and D. Burns, “Active transverse mode control and optimization of all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10, 550-555 (2002).
[PubMed]

2000

D. Wan, M. Rajadhyasksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33-1.40,” J. Microsc. 197, 274-284 (2000).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two photon microscope,” J. Microsc. 200, 105-108 (2000).
[CrossRef] [PubMed]

1998

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched-media,” J. Microsc. 192, 90-98 (1998).
[CrossRef]

1989

T. Wilson and A. R. Carlini, “The effect of aberrations on the axial response of confocal imaging systems,” J. Microsc. 154, 243-256 (1989).
[CrossRef]

1953

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229-236 (1953).
[CrossRef]

Albert, O.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in muliphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
[CrossRef] [PubMed]

Babcock, H. W.

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229-236 (1953).
[CrossRef]

Bente, E.

Bianchini, P.

G. Vicidomini, M. Schneider, P. Bianchini, S. Krol, T. Szellas, and A. Diaspro, “Characterization of uniform ultrathin layer for z-response measurements in three-dimensional section fluorescence microscopy,” J. Microsc. 225, 88-95 (2007).
[CrossRef] [PubMed]

Booth, M. J.

M. Schwertner, M. J. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540-6552 (2004).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two photon microscope,” J. Microsc. 200, 105-108 (2000).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched-media,” J. Microsc. 192, 90-98 (1998).
[CrossRef]

Brakenhoff, G. J.

G. J. Brakenhoff, G. W. Wurpel, K. Jalink, L. Oomen, L. Brocks, and J. M. Zwier, “Characterization of sectioning fluorescence microscopy with thin uniform fluorescent layers: sectioned imaging property or SIPcharts,” J. Microsc. 219, 122-132 (2005).
[CrossRef] [PubMed]

Brocks, L.

G. J. Brakenhoff, G. W. Wurpel, K. Jalink, L. Oomen, L. Brocks, and J. M. Zwier, “Characterization of sectioning fluorescence microscopy with thin uniform fluorescent layers: sectioned imaging property or SIPcharts,” J. Microsc. 219, 122-132 (2005).
[CrossRef] [PubMed]

Burns, D.

Carlini, A. R.

T. Wilson and A. R. Carlini, “The effect of aberrations on the axial response of confocal imaging systems,” J. Microsc. 154, 243-256 (1989).
[CrossRef]

Diaspro, A.

G. Vicidomini, M. Schneider, P. Bianchini, S. Krol, T. Szellas, and A. Diaspro, “Characterization of uniform ultrathin layer for z-response measurements in three-dimensional section fluorescence microscopy,” J. Microsc. 225, 88-95 (2007).
[CrossRef] [PubMed]

Girkin, J.

Girkin, J. M.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. Valentine, and J. M. Girkin, “Active aberration correction in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67, 36-44 (2005).
[CrossRef] [PubMed]

P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123-1130 (2003).
[CrossRef] [PubMed]

Jalink, K.

G. J. Brakenhoff, G. W. Wurpel, K. Jalink, L. Oomen, L. Brocks, and J. M. Zwier, “Characterization of sectioning fluorescence microscopy with thin uniform fluorescent layers: sectioned imaging property or SIPcharts,” J. Microsc. 219, 122-132 (2005).
[CrossRef] [PubMed]

Juskaitis, R.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two photon microscope,” J. Microsc. 200, 105-108 (2000).
[CrossRef] [PubMed]

Kawata, S.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two photon microscope,” J. Microsc. 200, 105-108 (2000).
[CrossRef] [PubMed]

Krol, S.

G. Vicidomini, M. Schneider, P. Bianchini, S. Krol, T. Szellas, and A. Diaspro, “Characterization of uniform ultrathin layer for z-response measurements in three-dimensional section fluorescence microscopy,” J. Microsc. 225, 88-95 (2007).
[CrossRef] [PubMed]

Lubeigt, W.

Marsh, P. N.

Neil, M. A. A.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two photon microscope,” J. Microsc. 200, 105-108 (2000).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched-media,” J. Microsc. 192, 90-98 (1998).
[CrossRef]

Norris, T. B.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in muliphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
[CrossRef] [PubMed]

Oomen, L.

G. J. Brakenhoff, G. W. Wurpel, K. Jalink, L. Oomen, L. Brocks, and J. M. Zwier, “Characterization of sectioning fluorescence microscopy with thin uniform fluorescent layers: sectioned imaging property or SIPcharts,” J. Microsc. 219, 122-132 (2005).
[CrossRef] [PubMed]

Patterson, B. A.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. Valentine, and J. M. Girkin, “Active aberration correction in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67, 36-44 (2005).
[CrossRef] [PubMed]

Poland, S. P.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. Valentine, and J. M. Girkin, “Active aberration correction in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67, 36-44 (2005).
[CrossRef] [PubMed]

Rajadhyasksha, M.

D. Wan, M. Rajadhyasksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33-1.40,” J. Microsc. 197, 274-284 (2000).
[CrossRef] [PubMed]

Schneider, M.

G. Vicidomini, M. Schneider, P. Bianchini, S. Krol, T. Szellas, and A. Diaspro, “Characterization of uniform ultrathin layer for z-response measurements in three-dimensional section fluorescence microscopy,” J. Microsc. 225, 88-95 (2007).
[CrossRef] [PubMed]

Schwertner, M.

Sherman, L.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in muliphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
[CrossRef] [PubMed]

Szellas, T.

G. Vicidomini, M. Schneider, P. Bianchini, S. Krol, T. Szellas, and A. Diaspro, “Characterization of uniform ultrathin layer for z-response measurements in three-dimensional section fluorescence microscopy,” J. Microsc. 225, 88-95 (2007).
[CrossRef] [PubMed]

Tanaka, T.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two photon microscope,” J. Microsc. 200, 105-108 (2000).
[CrossRef] [PubMed]

Valentine, G.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. Valentine, and J. M. Girkin, “Active aberration correction in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67, 36-44 (2005).
[CrossRef] [PubMed]

W. Lubeigt, G. Valentine, J. Girkin, E. Bente, and D. Burns, “Active transverse mode control and optimization of all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10, 550-555 (2002).
[PubMed]

Vicidomini, G.

G. Vicidomini, M. Schneider, P. Bianchini, S. Krol, T. Szellas, and A. Diaspro, “Characterization of uniform ultrathin layer for z-response measurements in three-dimensional section fluorescence microscopy,” J. Microsc. 225, 88-95 (2007).
[CrossRef] [PubMed]

Wan, D.

D. Wan, M. Rajadhyasksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33-1.40,” J. Microsc. 197, 274-284 (2000).
[CrossRef] [PubMed]

Webb, R. H.

D. Wan, M. Rajadhyasksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33-1.40,” J. Microsc. 197, 274-284 (2000).
[CrossRef] [PubMed]

Wilson, T.

M. Schwertner, M. J. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540-6552 (2004).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two photon microscope,” J. Microsc. 200, 105-108 (2000).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched-media,” J. Microsc. 192, 90-98 (1998).
[CrossRef]

T. Wilson and A. R. Carlini, “The effect of aberrations on the axial response of confocal imaging systems,” J. Microsc. 154, 243-256 (1989).
[CrossRef]

Wright, A. J.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. Valentine, and J. M. Girkin, “Active aberration correction in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67, 36-44 (2005).
[CrossRef] [PubMed]

Wurpel, G. W.

G. J. Brakenhoff, G. W. Wurpel, K. Jalink, L. Oomen, L. Brocks, and J. M. Zwier, “Characterization of sectioning fluorescence microscopy with thin uniform fluorescent layers: sectioned imaging property or SIPcharts,” J. Microsc. 219, 122-132 (2005).
[CrossRef] [PubMed]

Ye, J. Y.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in muliphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
[CrossRef] [PubMed]

Zucker, R. L.

R. L. Zucker, “Confocal microscopy system performance: axial resolution,” Microscopy Today 12, 38-40 (2004).

Zwier, J. M.

G. J. Brakenhoff, G. W. Wurpel, K. Jalink, L. Oomen, L. Brocks, and J. M. Zwier, “Characterization of sectioning fluorescence microscopy with thin uniform fluorescent layers: sectioned imaging property or SIPcharts,” J. Microsc. 219, 122-132 (2005).
[CrossRef] [PubMed]

J. Microsc.

T. Wilson and A. R. Carlini, “The effect of aberrations on the axial response of confocal imaging systems,” J. Microsc. 154, 243-256 (1989).
[CrossRef]

D. Wan, M. Rajadhyasksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33-1.40,” J. Microsc. 197, 274-284 (2000).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two photon microscope,” J. Microsc. 200, 105-108 (2000).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched-media,” J. Microsc. 192, 90-98 (1998).
[CrossRef]

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in muliphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002).
[CrossRef] [PubMed]

G. J. Brakenhoff, G. W. Wurpel, K. Jalink, L. Oomen, L. Brocks, and J. M. Zwier, “Characterization of sectioning fluorescence microscopy with thin uniform fluorescent layers: sectioned imaging property or SIPcharts,” J. Microsc. 219, 122-132 (2005).
[CrossRef] [PubMed]

G. Vicidomini, M. Schneider, P. Bianchini, S. Krol, T. Szellas, and A. Diaspro, “Characterization of uniform ultrathin layer for z-response measurements in three-dimensional section fluorescence microscopy,” J. Microsc. 225, 88-95 (2007).
[CrossRef] [PubMed]

Microsc. Res. Tech.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. Valentine, and J. M. Girkin, “Active aberration correction in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67, 36-44 (2005).
[CrossRef] [PubMed]

Microscopy Today

R. L. Zucker, “Confocal microscopy system performance: axial resolution,” Microscopy Today 12, 38-40 (2004).

Opt. Express

Publ. Astron. Soc. Pac.

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229-236 (1953).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Showing a schematic of the optical setup and sample preparation.

Fig. 2
Fig. 2

Origin of each fitness parameter in an axial resolution measurement.

Fig. 3
Fig. 3

Optimized PSFs of a sample containing 100 μm water using various fitness parameters in the GA.

Fig. 4
Fig. 4

Effects of optimizing each fitness parameter on the axial and lateral PSFs (where the plots have been normalized) for a 250 μm depth of water.

Tables (2)

Tables Icon

Table 1 Fitness Parameters Used in This Investigation

Tables Icon

Table 2 Average of Five Results for Each Fitness Parameter Showing the Final FWHM and Number of Mirrors Required for Optimization for a 250 μm Sample of Water

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1.43 ± 0.43

Metrics