Abstract

The wavefront aberrations in a large-scale, flash-lamp-pumped, high-energy, high-power glass laser system can degrade considerably the quality of the final focal spot, and limit severely the repetition rate. The various aberrations induced on the Laboratoire pour l'Utilisation des Lasers Intenses (LULI), laser facility (LULI2000) throughout the amplification are identified and analyzed in detail. Based on these analyses, an optimized procedure for dynamic wavefront control is then designed and implemented. The lower-order Zernike aberrations can be effectively reduced by combining an adaptive-optics setup, comprising a bimorph deformable mirror and a four-wave lateral shearing interferometer, with a precise alignment system. This enables the laser chain to produce a reproducible focal spot close to the diffraction limit (Strehl ratio 0.7). This allows also to increase the repetition rate, initially limited by the recovery time of the laser amplifiers, by a factor of 2 (one shot per hour). The proposed procedure provides an attractive alternative for dynamic correction of the wavefront aberrations of a laser facility as complex as the LULI2000.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, "National Ignition Facility laser performance status," Appl. Opt. 46, 3276-3303 (2006).
    [CrossRef]
  2. C. Cavaillier, N. Camarcat, F. Kovacs, and M. André, "Status of the LMJ Program," in Proceedings of the Third International Conference on Inertial Fusion Sciences (American Nuclear Society, 2003), pp. 523-528.
  3. M. D. Perry, D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H. T. Powell, M. Vergino, and V. Yanovsky, "Petawatt laser pulses," Opt. Lett. 24, 160-162 (1999).
    [CrossRef]
  4. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
    [CrossRef]
  5. B. Wattellier, J. Fuchs, J. P. Zou, K. Abdeli, H. Pépin, and C. Haefner, "Repetition rate increase and diffraction-limited focal spots for a nonthermal-equilibrium 100-TW Nd:glass laser chain by use of adaptive optics," Opt. Lett. 29, 2494-2496 (2004).
    [CrossRef] [PubMed]
  6. K. Nemoto, T. Nayuki, T. Fujii, N. Goto, and Y. K. Kanai, "Optimum control of the laser beam intensity profile with a deformable mirror," Appl. Opt. 36, 7689-7695 (1997).
    [CrossRef]
  7. C. J. Hooker, J. L. Collier, S. J. Hawkes, and C. Spindloe, "Adaptive optics development in the EU OTTER program," http://www.clf.rl.ac.uk/reports/2005-2006, pp. 202-205.
  8. J. Schwarz, M. Ramsey, I. Smith, D. Headley, and J. Porter, "Low order adaptive optics on Z-beamlet using a single actuator deformable mirror," Opt. Commun. 264, 203-212 (2006).
    [CrossRef]
  9. S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, "Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers," Opt. Lett. 30, 245-247 (2005).
    [CrossRef] [PubMed]
  10. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  11. D. C. Brown, High-Peak-Power Nd:Glass Laser Systems (Springer-Verlag, 1981).
  12. W. Koechner, Solid-State Laser Engineering, 5th ed., Vol. 1 of Springer Series in Optical Sciences (Springer, 1999).
  13. A. V. Kudryashov and V. I. Shmalhausen, "Semipassive bimorph flexible mirrors for atmospheric adaptive optics applications," Opt. Eng. 35, 3064-3073 (1996).
    [CrossRef]
  14. E. Dalimier and C. Dainty, "Comparative analysis of deformable mirrors for ocular adaptive optics," Opt. Express 13, 4275-4285 (2005).
    [CrossRef] [PubMed]

2006 (2)

2005 (2)

2004 (1)

1999 (1)

1997 (1)

1996 (1)

A. V. Kudryashov and V. I. Shmalhausen, "Semipassive bimorph flexible mirrors for atmospheric adaptive optics applications," Opt. Eng. 35, 3064-3073 (1996).
[CrossRef]

1985 (1)

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Abdeli, K.

André, M.

C. Cavaillier, N. Camarcat, F. Kovacs, and M. André, "Status of the LMJ Program," in Proceedings of the Third International Conference on Inertial Fusion Sciences (American Nuclear Society, 2003), pp. 523-528.

Auerbach, J. M.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Bowers, M. W.

Britten, J. A.

Brown, C.

Brown, D. C.

D. C. Brown, High-Peak-Power Nd:Glass Laser Systems (Springer-Verlag, 1981).

Camarcat, N.

C. Cavaillier, N. Camarcat, F. Kovacs, and M. André, "Status of the LMJ Program," in Proceedings of the Third International Conference on Inertial Fusion Sciences (American Nuclear Society, 2003), pp. 523-528.

Cavaillier, C.

C. Cavaillier, N. Camarcat, F. Kovacs, and M. André, "Status of the LMJ Program," in Proceedings of the Third International Conference on Inertial Fusion Sciences (American Nuclear Society, 2003), pp. 523-528.

Cohen, M.

Collier, J. L.

C. J. Hooker, J. L. Collier, S. J. Hawkes, and C. Spindloe, "Adaptive optics development in the EU OTTER program," http://www.clf.rl.ac.uk/reports/2005-2006, pp. 202-205.

Dainty, C.

Dalimier, E.

Dixit, S. N.

Erbert, G. V.

Fuchs, J.

Fujii, T.

Golick, B.

Goto, N.

Guérineau, N.

Haefner, C.

Hawkes, S. J.

C. J. Hooker, J. L. Collier, S. J. Hawkes, and C. Spindloe, "Adaptive optics development in the EU OTTER program," http://www.clf.rl.ac.uk/reports/2005-2006, pp. 202-205.

Haynam, C. A.

Headley, D.

J. Schwarz, M. Ramsey, I. Smith, D. Headley, and J. Porter, "Low order adaptive optics on Z-beamlet using a single actuator deformable mirror," Opt. Commun. 264, 203-212 (2006).
[CrossRef]

Heestand, G. M.

Henesian, M. A.

Herman, S.

Hermann, M. R.

Hooker, C. J.

C. J. Hooker, J. L. Collier, S. J. Hawkes, and C. Spindloe, "Adaptive optics development in the EU OTTER program," http://www.clf.rl.ac.uk/reports/2005-2006, pp. 202-205.

Jancaitis, K. S.

Kanai, Y. K.

Kartz, M.

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 5th ed., Vol. 1 of Springer Series in Optical Sciences (Springer, 1999).

Kovacs, F.

C. Cavaillier, N. Camarcat, F. Kovacs, and M. André, "Status of the LMJ Program," in Proceedings of the Third International Conference on Inertial Fusion Sciences (American Nuclear Society, 2003), pp. 523-528.

Kudryashov, A. V.

A. V. Kudryashov and V. I. Shmalhausen, "Semipassive bimorph flexible mirrors for atmospheric adaptive optics applications," Opt. Eng. 35, 3064-3073 (1996).
[CrossRef]

Manes, K. R.

Marshall, C. D.

Mehta, N. C.

Menapace, J.

Miller, J.

Moses, E.

Mourou, G.

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Murray, J. R.

Nayuki, T.

Nemoto, K.

Nostrand, M. C.

Orth, C. D.

Patterson, R.

Pennington, D.

Pépin, H.

Perry, M. D.

Porter, J.

J. Schwarz, M. Ramsey, I. Smith, D. Headley, and J. Porter, "Low order adaptive optics on Z-beamlet using a single actuator deformable mirror," Opt. Commun. 264, 203-212 (2006).
[CrossRef]

Powell, H. T.

Primot, J.

Ramsey, M.

J. Schwarz, M. Ramsey, I. Smith, D. Headley, and J. Porter, "Low order adaptive optics on Z-beamlet using a single actuator deformable mirror," Opt. Commun. 264, 203-212 (2006).
[CrossRef]

Sacks, R. A.

Schwarz, J.

J. Schwarz, M. Ramsey, I. Smith, D. Headley, and J. Porter, "Low order adaptive optics on Z-beamlet using a single actuator deformable mirror," Opt. Commun. 264, 203-212 (2006).
[CrossRef]

Shaw, M. J.

Shmalhausen, V. I.

A. V. Kudryashov and V. I. Shmalhausen, "Semipassive bimorph flexible mirrors for atmospheric adaptive optics applications," Opt. Eng. 35, 3064-3073 (1996).
[CrossRef]

Smith, I.

J. Schwarz, M. Ramsey, I. Smith, D. Headley, and J. Porter, "Low order adaptive optics on Z-beamlet using a single actuator deformable mirror," Opt. Commun. 264, 203-212 (2006).
[CrossRef]

Spaeth, M.

Spindloe, C.

C. J. Hooker, J. L. Collier, S. J. Hawkes, and C. Spindloe, "Adaptive optics development in the EU OTTER program," http://www.clf.rl.ac.uk/reports/2005-2006, pp. 202-205.

Strickland, D.

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Stuart, B. C.

Sutton, S. B.

Tietbohl, G.

Van Wonterghem, B. M.

Velghe, S.

Vergino, M.

Wattellier, B.

Wegner, P. J.

White, R. K.

Widmayer, C. C.

Williams, W. H.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Yang, S. T.

Yanovsky, V.

Zou, J. P.

Appl. Opt. (2)

Opt. Commun. (2)

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

J. Schwarz, M. Ramsey, I. Smith, D. Headley, and J. Porter, "Low order adaptive optics on Z-beamlet using a single actuator deformable mirror," Opt. Commun. 264, 203-212 (2006).
[CrossRef]

Opt. Eng. (1)

A. V. Kudryashov and V. I. Shmalhausen, "Semipassive bimorph flexible mirrors for atmospheric adaptive optics applications," Opt. Eng. 35, 3064-3073 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (5)

C. Cavaillier, N. Camarcat, F. Kovacs, and M. André, "Status of the LMJ Program," in Proceedings of the Third International Conference on Inertial Fusion Sciences (American Nuclear Society, 2003), pp. 523-528.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

D. C. Brown, High-Peak-Power Nd:Glass Laser Systems (Springer-Verlag, 1981).

W. Koechner, Solid-State Laser Engineering, 5th ed., Vol. 1 of Springer Series in Optical Sciences (Springer, 1999).

C. J. Hooker, J. L. Collier, S. J. Hawkes, and C. Spindloe, "Adaptive optics development in the EU OTTER program," http://www.clf.rl.ac.uk/reports/2005-2006, pp. 202-205.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Color online) Schematic of the four amplification stages of the LULI2000. RA, rod amplifier; DA, disk amplifier; FR, Faraday rotator; SF, spatial filter. A 100   mm diameter bimorph DM, implemented at the output of the second stage, is related to a wavefront sensor (SID-4) and a far-field measurement module placed at the chain output.

Fig. 2
Fig. 2

(Color online) Temporal evolution of the peak wavefront distortion after a single full-energy kilojoule shot, measured by the SID-4. Three zones are distinguished: (1) rapid increase; (2) rapid decay; and (3) slow variation.

Fig. 3
Fig. 3

Temporal evolution of the Zernike aberrations after a full-energy kilojoule shot, as recorded by the SID-4, for the defocus, the astigmatisms 0° and 45°.

Fig. 4
Fig. 4

Temporal evolutions of the (a) tilt Y and (b) coma Y, after a full-energy kilojoule shot, when the chain is initially well-aligned (square) and misaligned (circle).

Fig. 5
Fig. 5

Wavefront distortion under cumulative thermal effect, measured before each full-energy kilojoule shot, for the repetition rates of (a) one shot every two hours and (b) one shot per hour.

Fig. 6
Fig. 6

(Color online) (a) Residual rms phase error via the mode number used for correction. (b) Voltage dynamics of the 32 actuators with different mode numbers.

Fig. 7
Fig. 7

(Color online) Focal-spot patterns measured using a low-energy 10   Hz pulsed probe beam before and after the loop during a five-shot sequence with a repetition rate of one shot per hour.

Fig. 8
Fig. 8

(Color online) (a) Focal-spot patterns measured during the fifth full-energy kilojoule shot, without and with the optimized AO wavefront control. (b) Deduced Strehl ratio and encircled energy of the focal spot (with loop).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R s = 1 σ ϕ 2 = 1 ( 2 π λ ) 2 σ w 2 ,
B = U Λ V T ,

Metrics