Abstract

A technique of diffuse-light two-dimensional line-of-sight attenuation (diffuse 2D-LOSA) is described and demonstrated that achieves very high levels of sensitivity in transmissivity measurements (optical thicknesses down to 0.001) while effectively mitigating interferences due to beam steering. An optical system is described in which an arc lamp coupled with an integrating sphere is used as a source of diffuse light that is imaged to the center of the particulate laden medium. The center of the medium is then imaged onto a CCD detector with 1:1 magnification. Comparative measurements with collimated 2D-LOSA in nonpremixed flames demonstrate the accuracy and improved optical noise rejection of the technique. Tests in weakly sooting, nonpremixed methane–air flames, and in high pressure methane–air flames, reveal the excellent sensitivity of diffuse 2D-LOSA, which is primarily limited by the shot noise of the lamp and CCD detector.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U.S. Environmental Protection Agency, "Air quality criteria for particulate matter (October 2004)," EPA 600/P-99/002aF-bF, (U.S. Environmental Protection Agency, 2004).
  2. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds., in Climate Change 2007: The Physical Science Basis, contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge U. Press, 2007).
  3. B. S. Haynes and H. Gg. Wagner, "Soot formation," Prog. Energ. Combust. Sci. 7, 229-273 (1981).
    [CrossRef]
  4. H. Bockhorn, "Ultrafine particles from combustion sources: approaches to what we want to know," Philos. Trans. R. Soc. London , Ser. A 358, 2659-2672 (2000).
    [CrossRef]
  5. P. A. Vlasov and J. Warnatz, "Detailed kinetic modeling of soot formation in hydrocarbon pyrolysis behind shock waves," Proc. Combust. Inst. 29, 2335-2341 (2002).
    [CrossRef]
  6. A. D'Alessio, A. D'Anna, A. D'Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, "Precursor formation and soot inception in premixed ethylene flames," Proc. Combust. Inst. 24, 973-980 (1992).
  7. M. Frenklach, "Reaction mechanism of soot formation in flames," Phys. Chem. Chem. Phys. 4, 2028-2037 (2002).
    [CrossRef]
  8. A. V. Krestinin, "Detailed modeling of soot formation in hydrocarbon pyrolysis," Combust. Flame 121, 513-524 (2000).
    [CrossRef]
  9. P. S. Greenberg and J. C. Ku, "Soot volume fraction imaging," Appl. Opt. 36, 5514-5522 (1997).
    [CrossRef] [PubMed]
  10. D. R. Snelling, K. A. Thomson, G. J. Smallwood, and Ö. L. Gülder, "Two-dimensional imaging of soot volume fraction in laminar diffusion flames," Appl. Opt. 38, 2478-2485 (1999).
    [CrossRef]
  11. C. P. Arana, M. Pontoni, S. Sen, and I. K. Puri, "Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames," Combust. Flame 138, 362-372 (2004).
    [CrossRef]
  12. Y. Xu and C. F. Lee, "Forward-illuminated light-extinction technique for soot measurements," Appl. Opt. 45, 2046-2057 (2006).
    [CrossRef] [PubMed]
  13. K. A. Thomson, "Soot formation in annular non-premixed laminar flames of methane-air at pressures of 0.1 to 4.0 MPa," Ph.D. dissertation (University of Waterloo, 2004).
  14. P. A. Bonczyk and R. J. Hall, "Fractal properties of soot agglomerates," Langmuir 7, 1274-1280 (1991).
    [CrossRef]
  15. R. A. Dobbins and C. M. Megaridis, "Absorption and scattering of light by polydisperse aggregates," Appl. Opt. 30, 4747-4754 (1991).
    [CrossRef] [PubMed]
  16. Ü. Ö. Köylü and G. M. Faeth, "Structure of overfire soot in buoyant turbulent diffusion flames at long residence times," Combust. Flame 89, 140-156 (1992).
    [CrossRef]
  17. C. M. Sorensen, "Light scattering by fractal aggregates: a review," Aerosol Sci. Technol. 35, 648-687 (2001).
  18. R. J. Hall and P. A. Bonczyk, "Sooting flame thermometry using emission/absorption tomography," Appl. Opt. 29, 4590-4598 (1990).
    [CrossRef] [PubMed]
  19. D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, E. J. Weckman, and R. A. Fraser, "Spectrally resolved measurement of flame radiation to determine soot temperature and concentration," AIAA J. 40, 1789-1795 (2002).
    [CrossRef]
  20. M. Choi, G. W. Mulholland, A. Hamins, and T. Kashiwagi, "Comparisons of soot volume fraction using gravimetric and light extinction techniques," Combust. Flame 102, 161-169 (1995).
    [CrossRef]
  21. C. J. Dasch, "One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods," Appl. Opt. 31, 1146-1152 (1992).
    [CrossRef] [PubMed]
  22. K. J. Daun, K. A. Thomson, F. Liu, and G. J. Smallwood, "Deconvolution of axisymmetric flame properties using Tikhonov regularization," Appl. Opt. 45, 4638-4646 (2006).
    [CrossRef] [PubMed]
  23. W. L. Howes and D. R. Buchelle, "Optical interferometry of inhomogeneous gases," J. Opt. Soc. Am. 56, 1517-1528 (1966).
    [CrossRef]
  24. K. A. Thomson, O. L. Gülder, E. J. Weckman, R. A. Fraser, G. J. Smallwood, and D. R. Snelling, "Soot concentration and temperature measurements in annular, non-premixed laminar flames at pressures up to 4 MPa," Combust. Flame 140, 222-232 (2005).
    [CrossRef]
  25. K. T. Walsh, J. Fielding, and M. B. Long, "Effect of light-collection geometry on reconstruction errors in Abel inversions," Opt. Lett. 25, 457-459 (2000).
    [CrossRef]

2006 (2)

2005 (1)

K. A. Thomson, O. L. Gülder, E. J. Weckman, R. A. Fraser, G. J. Smallwood, and D. R. Snelling, "Soot concentration and temperature measurements in annular, non-premixed laminar flames at pressures up to 4 MPa," Combust. Flame 140, 222-232 (2005).
[CrossRef]

2004 (1)

C. P. Arana, M. Pontoni, S. Sen, and I. K. Puri, "Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames," Combust. Flame 138, 362-372 (2004).
[CrossRef]

2002 (3)

M. Frenklach, "Reaction mechanism of soot formation in flames," Phys. Chem. Chem. Phys. 4, 2028-2037 (2002).
[CrossRef]

P. A. Vlasov and J. Warnatz, "Detailed kinetic modeling of soot formation in hydrocarbon pyrolysis behind shock waves," Proc. Combust. Inst. 29, 2335-2341 (2002).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, E. J. Weckman, and R. A. Fraser, "Spectrally resolved measurement of flame radiation to determine soot temperature and concentration," AIAA J. 40, 1789-1795 (2002).
[CrossRef]

2001 (1)

C. M. Sorensen, "Light scattering by fractal aggregates: a review," Aerosol Sci. Technol. 35, 648-687 (2001).

2000 (3)

K. T. Walsh, J. Fielding, and M. B. Long, "Effect of light-collection geometry on reconstruction errors in Abel inversions," Opt. Lett. 25, 457-459 (2000).
[CrossRef]

H. Bockhorn, "Ultrafine particles from combustion sources: approaches to what we want to know," Philos. Trans. R. Soc. London , Ser. A 358, 2659-2672 (2000).
[CrossRef]

A. V. Krestinin, "Detailed modeling of soot formation in hydrocarbon pyrolysis," Combust. Flame 121, 513-524 (2000).
[CrossRef]

1999 (1)

1997 (1)

1995 (1)

M. Choi, G. W. Mulholland, A. Hamins, and T. Kashiwagi, "Comparisons of soot volume fraction using gravimetric and light extinction techniques," Combust. Flame 102, 161-169 (1995).
[CrossRef]

1992 (3)

Ü. Ö. Köylü and G. M. Faeth, "Structure of overfire soot in buoyant turbulent diffusion flames at long residence times," Combust. Flame 89, 140-156 (1992).
[CrossRef]

A. D'Alessio, A. D'Anna, A. D'Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, "Precursor formation and soot inception in premixed ethylene flames," Proc. Combust. Inst. 24, 973-980 (1992).

C. J. Dasch, "One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods," Appl. Opt. 31, 1146-1152 (1992).
[CrossRef] [PubMed]

1991 (2)

1990 (1)

1981 (1)

B. S. Haynes and H. Gg. Wagner, "Soot formation," Prog. Energ. Combust. Sci. 7, 229-273 (1981).
[CrossRef]

1966 (1)

Arana, C. P.

C. P. Arana, M. Pontoni, S. Sen, and I. K. Puri, "Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames," Combust. Flame 138, 362-372 (2004).
[CrossRef]

Averyt, K. B.

S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds., in Climate Change 2007: The Physical Science Basis, contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge U. Press, 2007).

Barbella, R.

A. D'Alessio, A. D'Anna, A. D'Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, "Precursor formation and soot inception in premixed ethylene flames," Proc. Combust. Inst. 24, 973-980 (1992).

Bockhorn, H.

H. Bockhorn, "Ultrafine particles from combustion sources: approaches to what we want to know," Philos. Trans. R. Soc. London , Ser. A 358, 2659-2672 (2000).
[CrossRef]

Bonczyk, P. A.

Buchelle, D. R.

Chen, Z.

S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds., in Climate Change 2007: The Physical Science Basis, contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge U. Press, 2007).

Choi, M.

M. Choi, G. W. Mulholland, A. Hamins, and T. Kashiwagi, "Comparisons of soot volume fraction using gravimetric and light extinction techniques," Combust. Flame 102, 161-169 (1995).
[CrossRef]

Ciajolo, A.

A. D'Alessio, A. D'Anna, A. D'Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, "Precursor formation and soot inception in premixed ethylene flames," Proc. Combust. Inst. 24, 973-980 (1992).

D'Alessio, A.

A. D'Alessio, A. D'Anna, A. D'Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, "Precursor formation and soot inception in premixed ethylene flames," Proc. Combust. Inst. 24, 973-980 (1992).

D'Anna, A.

A. D'Alessio, A. D'Anna, A. D'Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, "Precursor formation and soot inception in premixed ethylene flames," Proc. Combust. Inst. 24, 973-980 (1992).

Dasch, C. J.

Daun, K. J.

Dobbins, R. A.

D'Orsi, A.

A. D'Alessio, A. D'Anna, A. D'Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, "Precursor formation and soot inception in premixed ethylene flames," Proc. Combust. Inst. 24, 973-980 (1992).

Faeth, G. M.

Ü. Ö. Köylü and G. M. Faeth, "Structure of overfire soot in buoyant turbulent diffusion flames at long residence times," Combust. Flame 89, 140-156 (1992).
[CrossRef]

Fielding, J.

Fraser, R. A.

K. A. Thomson, O. L. Gülder, E. J. Weckman, R. A. Fraser, G. J. Smallwood, and D. R. Snelling, "Soot concentration and temperature measurements in annular, non-premixed laminar flames at pressures up to 4 MPa," Combust. Flame 140, 222-232 (2005).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, E. J. Weckman, and R. A. Fraser, "Spectrally resolved measurement of flame radiation to determine soot temperature and concentration," AIAA J. 40, 1789-1795 (2002).
[CrossRef]

Frenklach, M.

M. Frenklach, "Reaction mechanism of soot formation in flames," Phys. Chem. Chem. Phys. 4, 2028-2037 (2002).
[CrossRef]

Greenberg, P. S.

Gülder, O. L.

K. A. Thomson, O. L. Gülder, E. J. Weckman, R. A. Fraser, G. J. Smallwood, and D. R. Snelling, "Soot concentration and temperature measurements in annular, non-premixed laminar flames at pressures up to 4 MPa," Combust. Flame 140, 222-232 (2005).
[CrossRef]

Gülder, Ö. L.

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, E. J. Weckman, and R. A. Fraser, "Spectrally resolved measurement of flame radiation to determine soot temperature and concentration," AIAA J. 40, 1789-1795 (2002).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, and Ö. L. Gülder, "Two-dimensional imaging of soot volume fraction in laminar diffusion flames," Appl. Opt. 38, 2478-2485 (1999).
[CrossRef]

Hall, R. J.

Hamins, A.

M. Choi, G. W. Mulholland, A. Hamins, and T. Kashiwagi, "Comparisons of soot volume fraction using gravimetric and light extinction techniques," Combust. Flame 102, 161-169 (1995).
[CrossRef]

Haynes, B. S.

B. S. Haynes and H. Gg. Wagner, "Soot formation," Prog. Energ. Combust. Sci. 7, 229-273 (1981).
[CrossRef]

Howes, W. L.

Kashiwagi, T.

M. Choi, G. W. Mulholland, A. Hamins, and T. Kashiwagi, "Comparisons of soot volume fraction using gravimetric and light extinction techniques," Combust. Flame 102, 161-169 (1995).
[CrossRef]

Köylü, Ü. Ö.

Ü. Ö. Köylü and G. M. Faeth, "Structure of overfire soot in buoyant turbulent diffusion flames at long residence times," Combust. Flame 89, 140-156 (1992).
[CrossRef]

Krestinin, A. V.

A. V. Krestinin, "Detailed modeling of soot formation in hydrocarbon pyrolysis," Combust. Flame 121, 513-524 (2000).
[CrossRef]

Ku, J. C.

Lee, C. F.

Liu, F.

Long, M. B.

Manning, M.

S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds., in Climate Change 2007: The Physical Science Basis, contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge U. Press, 2007).

Marquis, M.

S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds., in Climate Change 2007: The Physical Science Basis, contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge U. Press, 2007).

Megaridis, C. M.

Miller, H. L.

S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds., in Climate Change 2007: The Physical Science Basis, contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge U. Press, 2007).

Minutolo, P.

A. D'Alessio, A. D'Anna, A. D'Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, "Precursor formation and soot inception in premixed ethylene flames," Proc. Combust. Inst. 24, 973-980 (1992).

Mulholland, G. W.

M. Choi, G. W. Mulholland, A. Hamins, and T. Kashiwagi, "Comparisons of soot volume fraction using gravimetric and light extinction techniques," Combust. Flame 102, 161-169 (1995).
[CrossRef]

Pontoni, M.

C. P. Arana, M. Pontoni, S. Sen, and I. K. Puri, "Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames," Combust. Flame 138, 362-372 (2004).
[CrossRef]

Puri, I. K.

C. P. Arana, M. Pontoni, S. Sen, and I. K. Puri, "Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames," Combust. Flame 138, 362-372 (2004).
[CrossRef]

Qin, D.

S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds., in Climate Change 2007: The Physical Science Basis, contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge U. Press, 2007).

Sen, S.

C. P. Arana, M. Pontoni, S. Sen, and I. K. Puri, "Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames," Combust. Flame 138, 362-372 (2004).
[CrossRef]

Smallwood, G. J.

K. J. Daun, K. A. Thomson, F. Liu, and G. J. Smallwood, "Deconvolution of axisymmetric flame properties using Tikhonov regularization," Appl. Opt. 45, 4638-4646 (2006).
[CrossRef] [PubMed]

K. A. Thomson, O. L. Gülder, E. J. Weckman, R. A. Fraser, G. J. Smallwood, and D. R. Snelling, "Soot concentration and temperature measurements in annular, non-premixed laminar flames at pressures up to 4 MPa," Combust. Flame 140, 222-232 (2005).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, E. J. Weckman, and R. A. Fraser, "Spectrally resolved measurement of flame radiation to determine soot temperature and concentration," AIAA J. 40, 1789-1795 (2002).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, and Ö. L. Gülder, "Two-dimensional imaging of soot volume fraction in laminar diffusion flames," Appl. Opt. 38, 2478-2485 (1999).
[CrossRef]

Snelling, D. R.

K. A. Thomson, O. L. Gülder, E. J. Weckman, R. A. Fraser, G. J. Smallwood, and D. R. Snelling, "Soot concentration and temperature measurements in annular, non-premixed laminar flames at pressures up to 4 MPa," Combust. Flame 140, 222-232 (2005).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, E. J. Weckman, and R. A. Fraser, "Spectrally resolved measurement of flame radiation to determine soot temperature and concentration," AIAA J. 40, 1789-1795 (2002).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, and Ö. L. Gülder, "Two-dimensional imaging of soot volume fraction in laminar diffusion flames," Appl. Opt. 38, 2478-2485 (1999).
[CrossRef]

Solomon, S.

S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds., in Climate Change 2007: The Physical Science Basis, contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge U. Press, 2007).

Sorensen, C. M.

C. M. Sorensen, "Light scattering by fractal aggregates: a review," Aerosol Sci. Technol. 35, 648-687 (2001).

Thomson, K. A.

K. J. Daun, K. A. Thomson, F. Liu, and G. J. Smallwood, "Deconvolution of axisymmetric flame properties using Tikhonov regularization," Appl. Opt. 45, 4638-4646 (2006).
[CrossRef] [PubMed]

K. A. Thomson, O. L. Gülder, E. J. Weckman, R. A. Fraser, G. J. Smallwood, and D. R. Snelling, "Soot concentration and temperature measurements in annular, non-premixed laminar flames at pressures up to 4 MPa," Combust. Flame 140, 222-232 (2005).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, E. J. Weckman, and R. A. Fraser, "Spectrally resolved measurement of flame radiation to determine soot temperature and concentration," AIAA J. 40, 1789-1795 (2002).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, and Ö. L. Gülder, "Two-dimensional imaging of soot volume fraction in laminar diffusion flames," Appl. Opt. 38, 2478-2485 (1999).
[CrossRef]

K. A. Thomson, "Soot formation in annular non-premixed laminar flames of methane-air at pressures of 0.1 to 4.0 MPa," Ph.D. dissertation (University of Waterloo, 2004).

Tignor, M.

S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds., in Climate Change 2007: The Physical Science Basis, contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge U. Press, 2007).

Vlasov, P. A.

P. A. Vlasov and J. Warnatz, "Detailed kinetic modeling of soot formation in hydrocarbon pyrolysis behind shock waves," Proc. Combust. Inst. 29, 2335-2341 (2002).
[CrossRef]

Wagner, H. Gg.

B. S. Haynes and H. Gg. Wagner, "Soot formation," Prog. Energ. Combust. Sci. 7, 229-273 (1981).
[CrossRef]

Walsh, K. T.

Warnatz, J.

P. A. Vlasov and J. Warnatz, "Detailed kinetic modeling of soot formation in hydrocarbon pyrolysis behind shock waves," Proc. Combust. Inst. 29, 2335-2341 (2002).
[CrossRef]

Weckman, E. J.

K. A. Thomson, O. L. Gülder, E. J. Weckman, R. A. Fraser, G. J. Smallwood, and D. R. Snelling, "Soot concentration and temperature measurements in annular, non-premixed laminar flames at pressures up to 4 MPa," Combust. Flame 140, 222-232 (2005).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, E. J. Weckman, and R. A. Fraser, "Spectrally resolved measurement of flame radiation to determine soot temperature and concentration," AIAA J. 40, 1789-1795 (2002).
[CrossRef]

Xu, Y.

Aerosol Sci. Technol. (1)

C. M. Sorensen, "Light scattering by fractal aggregates: a review," Aerosol Sci. Technol. 35, 648-687 (2001).

AIAA J. (1)

D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, E. J. Weckman, and R. A. Fraser, "Spectrally resolved measurement of flame radiation to determine soot temperature and concentration," AIAA J. 40, 1789-1795 (2002).
[CrossRef]

Appl. Opt. (7)

Combust. Flame (5)

M. Choi, G. W. Mulholland, A. Hamins, and T. Kashiwagi, "Comparisons of soot volume fraction using gravimetric and light extinction techniques," Combust. Flame 102, 161-169 (1995).
[CrossRef]

Ü. Ö. Köylü and G. M. Faeth, "Structure of overfire soot in buoyant turbulent diffusion flames at long residence times," Combust. Flame 89, 140-156 (1992).
[CrossRef]

K. A. Thomson, O. L. Gülder, E. J. Weckman, R. A. Fraser, G. J. Smallwood, and D. R. Snelling, "Soot concentration and temperature measurements in annular, non-premixed laminar flames at pressures up to 4 MPa," Combust. Flame 140, 222-232 (2005).
[CrossRef]

A. V. Krestinin, "Detailed modeling of soot formation in hydrocarbon pyrolysis," Combust. Flame 121, 513-524 (2000).
[CrossRef]

C. P. Arana, M. Pontoni, S. Sen, and I. K. Puri, "Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames," Combust. Flame 138, 362-372 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

Langmuir (1)

P. A. Bonczyk and R. J. Hall, "Fractal properties of soot agglomerates," Langmuir 7, 1274-1280 (1991).
[CrossRef]

Opt. Lett. (1)

Philos. Trans. R. Soc. London (1)

H. Bockhorn, "Ultrafine particles from combustion sources: approaches to what we want to know," Philos. Trans. R. Soc. London , Ser. A 358, 2659-2672 (2000).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

M. Frenklach, "Reaction mechanism of soot formation in flames," Phys. Chem. Chem. Phys. 4, 2028-2037 (2002).
[CrossRef]

Proc. Combust. Inst. (2)

P. A. Vlasov and J. Warnatz, "Detailed kinetic modeling of soot formation in hydrocarbon pyrolysis behind shock waves," Proc. Combust. Inst. 29, 2335-2341 (2002).
[CrossRef]

A. D'Alessio, A. D'Anna, A. D'Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, "Precursor formation and soot inception in premixed ethylene flames," Proc. Combust. Inst. 24, 973-980 (1992).

Prog. Energ. Combust. Sci. (1)

B. S. Haynes and H. Gg. Wagner, "Soot formation," Prog. Energ. Combust. Sci. 7, 229-273 (1981).
[CrossRef]

Other (3)

K. A. Thomson, "Soot formation in annular non-premixed laminar flames of methane-air at pressures of 0.1 to 4.0 MPa," Ph.D. dissertation (University of Waterloo, 2004).

U.S. Environmental Protection Agency, "Air quality criteria for particulate matter (October 2004)," EPA 600/P-99/002aF-bF, (U.S. Environmental Protection Agency, 2004).

S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds., in Climate Change 2007: The Physical Science Basis, contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge U. Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Transmissivity images of sooting flames recorded with collimated 2D-LOSA. a, Gülder laminar coannular ethylene–air nonpremixed (reproduced from [10]); b, high pressure coannular methane–air flame at 10 atm (see [24] for details on burner chamber and flow conditions).

Fig. 2
Fig. 2

Collimated 2D-LOSA optical setup for application in high pressure flame (solid curve, ray trace for one line-of-sight attenuation chord through the flame; dotted curve, example path followed by same chord when beam steering is present).

Fig. 3
Fig. 3

Experimental layout of diffuse 2D-LOSA diagnostic. Light shading represents the total envelope of light emitted by sphere, focused at the center of the attenuating medium, and which intersects the first medium imaging lens. Dark shading represents the rays for one line-of-sight chord through the medium. The dotted line is the smaller solid angle of the line-of-sight chord that is collected by the medium imaging lenses.

Fig. 4
Fig. 4

Effect of beam steering on diffuse 2D-LOSA measurement. Incident light beam for one measurement chord shown with light shading. Deflection of the beam by beam steering shown as dotted lines. Light cone collected by detector for steered and unsteered light (i.e., the same) shown with dark shading.

Fig. 5
Fig. 5

Twenty-five shot average images collected with diffuse 2D-LOSA for a coannular ethylene–air nonpremixed Gülder burner flame (ethylene 194 sccm, air 284 slpm). NB: image contrast optimized for each image.

Fig. 6
Fig. 6

a, Horizontal chords of optical thickness ( ln ( τ λ ) = K λ ( e ) d s ) and b, uncertainty of the measurements for collimated 2D-LOSA. c, Optical thickness and d, uncertainty for diffuse 2D-LOSA.

Fig. 7
Fig. 7

Comparison of collimated and diffuse LOSA applied to a coannular ethylene–air nonpremixed flame. a, Soot volume fraction, f v (ppm) and b, standard deviation of soot volume fraction, σ f v for collimated 2D-LOSA; c, f v (ppm) and d, σ f v for diffuse 2D-LOSA; all for bin size of 50 μ m h × 500 μ m   v .

Fig. 8
Fig. 8

f v (ppm) using diffuse 2D-LOSA and collimated 2D-LOSA in coannular ethylene–air nonpremixed flame for selected heights above the burner (HAB).

Fig. 9
Fig. 9

Demonstration of diffuse 2D-LOSA applied to a methane diluted with helium–air laminar coannular flame at selected HAB. a, Optical thickness; b, precision uncertainty of optical thickness; c, soot volume fraction; and d, soot volume fraction uncertainty.

Fig. 10
Fig. 10

Demonstration of diffuse 2D-LOSA applied to a 10 atm, methane–air nonpremixed flame. a, Transmissivity image showing very little distortion as compared to Fig. 1b; b, f v (ppm), and c, σ f v (ppm).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

τ λ = I λ I λ , 0 = exp ( K λ ( e ) d s ) .
f v = K λ ( e ) λ 6 π ( 1 + ρ s a , λ ) E ( m ) λ ,
τ λ = transmission emission lamp dark .
σ K λ ( e ) d s = ( σ trans trans emis ) 2 + ( σ emis trans emis ) 2 + ( σ lamp lamp dark ) 2 + ( σ dark lamp dark ) 2 .
σ K λ ( e ) ( r i ) = σ K λ ( e ) d s Δ r j D i j 2 ,
σ K λ ( e ) ( r i ) = 1 Δ r j ( D i j σ K λ ( e ) d s ( y j ) ) 2 .
σ f v f v = ( σ K λ ( e ) K λ ( e ) ) 2 + ( σ λ λ ) 2 + ( σ ρ s a ρ s a ) 2 + ( σ E ( m ) λ E ( m ) λ ) 2 .

Metrics