Abstract

Depth dependent broadening of the axial point spread function due to dispersion in the imaged media, and algorithms for postprocess correction, have been previously described for both time domain and frequency domain optical coherence tomography. We show that homogeneous media dispersion artifacts disappear when frequency domain samples are acquired with uniform spacing in circular wavenumber, as opposed to uniform sampling in optical frequency. We further explicate the source of this point spread broadening and simulate its magnitude in aqueous media. We experimentally demonstrate media dispersion compensation in high dispersion glass by choosing sample frequencies at equal intervals of media index of refraction divided by vacuum wavelength, and we recover unbroadened reflections without an additional postprocessing step.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, "Dispersion effects in partial coherence interferometry: implications for intraocular ranging," J. Biomed. Opt. 4, 144-151 (1999).
    [CrossRef]
  2. Y. M. Wang, J. S. Nelson, Z. P. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003).
    [CrossRef] [PubMed]
  3. T. R. Hillman and D. D. Sampson, "The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography," Opt. Express 13, 1860-1874 (2005).
    [CrossRef] [PubMed]
  4. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001).
    [CrossRef] [PubMed]
  5. A. V. Zvyagin, E. D. J. Smith, and D. D. Sampson, "Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry," J. Opt. Soc. Am. A 20, 333-341 (2003).
    [CrossRef]
  6. W. K. Niblack, J. O. Schenk, B. Liu, and M. E. Brezinski, "Dispersion in a grating-based optical delay line for optical coherence tomography," Appl. Opt. 42, 4115-4118 (2003).
    [CrossRef] [PubMed]
  7. A. R. Tumlinson, J. K. Barton, B. Považay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1878-1887 (2006).
    [CrossRef] [PubMed]
  8. E. D. J. Smith, A. V. Zvyagin, and D. D. Sampson, "Real-time dispersion compensation in scanning interferometry," Opt. Lett. 27, 1998-2000 (2002).
    [CrossRef]
  9. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Autofocus algorithm for dispersion correction in optical coherence tomography," Appl. Opt. 42, 3038-3046 (2003).
    [CrossRef] [PubMed]
  10. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media," Appl. Opt. 42, 204-217 (2003).
    [CrossRef] [PubMed]
  11. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
    [CrossRef] [PubMed]
  12. D. Choi, H. Hiko-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain-reffectometry optical coherence tomography," Jpn. J. Appl. Phys. Part 1 45, 6022-6027 (2006).
    [CrossRef]
  13. Z. G. Wang, Z. J. Yuan, H. Y. Wang, and Y. T. Pan, "Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique," Opt. Express 14, 7014-7023 (2006).
    [CrossRef] [PubMed]
  14. M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 044009 (2005).
    [CrossRef]
  15. M. V. Sarunic, M. A. Choma, C. H. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3 × 3 fiber couplers," Opt. Express 13, 957-967 (2005).
    [CrossRef] [PubMed]
  16. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation," Opt. Lett. 31, 362-364 (2006).
    [CrossRef] [PubMed]
  17. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
    [CrossRef] [PubMed]
  18. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef] [PubMed]
  19. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Inverse scattering for optical coherence tomography," J. Opt. Soc. Am. A 23, 1027-1037 (2006).
    [CrossRef]
  20. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
    [CrossRef] [PubMed]
  21. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, "Spectral shaping for non-Gaussian source spectra in optical coherence tomography," Opt. Lett. 27, 406-408 (2002).
    [CrossRef]
  22. A. G. Van Engen, S. A. Diddams, and T. S. Clement, "Dispersion measurements of water with white-light interferometry," Appl. Opt. 37, 5679-5686 (1998).
    [CrossRef]
  23. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, "Spectral resolution and sampling issues in Fourier-transform spectral interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000).
    [CrossRef]
  24. A. Kohlhaas, C. Fromchen, and E. Brinkmeyer, "High-resolution ocdr for testing integrated-optical wave-guides-dispersion-corrupted experimental-data corrected by a numerical algorithm," J. Lightwave Technol. 9, 1493-1502 (1991).
    [CrossRef]
  25. E. Brinkmeyer, A. Kohlhaas, and C. Fromchen, "Efficient algorithm for nonequidistant interpolation of sampled data," Electron. Lett. 28, 693-695 (1992).
    [CrossRef]

2006 (5)

2005 (4)

2004 (2)

2003 (5)

2002 (3)

2001 (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, "Dispersion effects in partial coherence interferometry: implications for intraocular ranging," J. Biomed. Opt. 4, 144-151 (1999).
[CrossRef]

1998 (1)

1992 (1)

E. Brinkmeyer, A. Kohlhaas, and C. Fromchen, "Efficient algorithm for nonequidistant interpolation of sampled data," Electron. Lett. 28, 693-695 (1992).
[CrossRef]

1991 (1)

A. Kohlhaas, C. Fromchen, and E. Brinkmeyer, "High-resolution ocdr for testing integrated-optical wave-guides-dispersion-corrupted experimental-data corrected by a numerical algorithm," J. Lightwave Technol. 9, 1493-1502 (1991).
[CrossRef]

Amano, T.

D. Choi, H. Hiko-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain-reffectometry optical coherence tomography," Jpn. J. Appl. Phys. Part 1 45, 6022-6027 (2006).
[CrossRef]

Bajraszewski, T.

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Barton, J. K.

Baumgartner, A.

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, "Dispersion effects in partial coherence interferometry: implications for intraocular ranging," J. Biomed. Opt. 4, 144-151 (1999).
[CrossRef]

Belabas, N.

Boppart, S. A.

Bouma, B. E.

Brezinski, M. E.

Brinkmeyer, E.

E. Brinkmeyer, A. Kohlhaas, and C. Fromchen, "Efficient algorithm for nonequidistant interpolation of sampled data," Electron. Lett. 28, 693-695 (1992).
[CrossRef]

A. Kohlhaas, C. Fromchen, and E. Brinkmeyer, "High-resolution ocdr for testing integrated-optical wave-guides-dispersion-corrupted experimental-data corrected by a numerical algorithm," J. Lightwave Technol. 9, 1493-1502 (1991).
[CrossRef]

Carney, P. S.

Chen, Z. P.

Choi, D.

D. Choi, H. Hiko-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain-reffectometry optical coherence tomography," Jpn. J. Appl. Phys. Part 1 45, 6022-6027 (2006).
[CrossRef]

Choma, M. A.

M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 044009 (2005).
[CrossRef]

M. V. Sarunic, M. A. Choma, C. H. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3 × 3 fiber couplers," Opt. Express 13, 957-967 (2005).
[CrossRef] [PubMed]

Chuck, R. S.

Clement, T. S.

de Boer, J. F.

Diddams, S. A.

Dorrer, C.

Drexler, W.

A. R. Tumlinson, J. K. Barton, B. Považay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1878-1887 (2006).
[CrossRef] [PubMed]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, "Dispersion effects in partial coherence interferometry: implications for intraocular ranging," J. Biomed. Opt. 4, 144-151 (1999).
[CrossRef]

Duker, J. S.

Fercher, A. F.

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, "Dispersion effects in partial coherence interferometry: implications for intraocular ranging," J. Biomed. Opt. 4, 144-151 (1999).
[CrossRef]

Fromchen, C.

E. Brinkmeyer, A. Kohlhaas, and C. Fromchen, "Efficient algorithm for nonequidistant interpolation of sampled data," Electron. Lett. 28, 693-695 (1992).
[CrossRef]

A. Kohlhaas, C. Fromchen, and E. Brinkmeyer, "High-resolution ocdr for testing integrated-optical wave-guides-dispersion-corrupted experimental-data corrected by a numerical algorithm," J. Lightwave Technol. 9, 1493-1502 (1991).
[CrossRef]

Fujimoto, J. G.

Furukawa, H.

D. Choi, H. Hiko-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain-reffectometry optical coherence tomography," Jpn. J. Appl. Phys. Part 1 45, 6022-6027 (2006).
[CrossRef]

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Hermann, B.

Hiko-Oka, H.

D. Choi, H. Hiko-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain-reffectometry optical coherence tomography," Jpn. J. Appl. Phys. Part 1 45, 6022-6027 (2006).
[CrossRef]

Hillman, T. R.

Hitzenberger, C. K.

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, "Dispersion effects in partial coherence interferometry: implications for intraocular ranging," J. Biomed. Opt. 4, 144-151 (1999).
[CrossRef]

Hsu, K.

Huber, R.

Izatt, J. A.

M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 044009 (2005).
[CrossRef]

M. V. Sarunic, M. A. Choma, C. H. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3 × 3 fiber couplers," Opt. Express 13, 957-967 (2005).
[CrossRef] [PubMed]

Joffre, M.

Kano, F.

D. Choi, H. Hiko-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain-reffectometry optical coherence tomography," Jpn. J. Appl. Phys. Part 1 45, 6022-6027 (2006).
[CrossRef]

Kartner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Ko, T. H.

Kohlhaas, A.

E. Brinkmeyer, A. Kohlhaas, and C. Fromchen, "Efficient algorithm for nonequidistant interpolation of sampled data," Electron. Lett. 28, 693-695 (1992).
[CrossRef]

A. Kohlhaas, C. Fromchen, and E. Brinkmeyer, "High-resolution ocdr for testing integrated-optical wave-guides-dispersion-corrupted experimental-data corrected by a numerical algorithm," J. Lightwave Technol. 9, 1493-1502 (1991).
[CrossRef]

Kowalczyk, A.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Le, T.

Leitgeb, R.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Leitgeb, R. A.

Likforman, J. P.

Liu, B.

Marks, D. L.

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Nakanishi, M.

D. Choi, H. Hiko-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain-reffectometry optical coherence tomography," Jpn. J. Appl. Phys. Part 1 45, 6022-6027 (2006).
[CrossRef]

Nassif, N.

Nelson, J. S.

Niblack, W. K.

Ohbayashi, K.

D. Choi, H. Hiko-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain-reffectometry optical coherence tomography," Jpn. J. Appl. Phys. Part 1 45, 6022-6027 (2006).
[CrossRef]

Oldenburg, A. L.

Pan, Y. T.

Park, B. H.

Považay, B.

Ralston, T. S.

Reiser, B. J.

Reynolds, J. J.

Sampson, D. D.

Sarunic, M. V.

Sattman, H.

Schenk, J. O.

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Shimizu, K.

D. Choi, H. Hiko-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain-reffectometry optical coherence tomography," Jpn. J. Appl. Phys. Part 1 45, 6022-6027 (2006).
[CrossRef]

Smith, E. D. J.

Srinivasan, V. J.

Stingl, A.

Taira, K.

Tearney, G. J.

Tripathi, R.

Tumlinson, A. R.

Unterhuber, A.

Vakoc, B. J.

Van Engen, A. G.

Wang, H. Y.

Wang, Y. M.

Wang, Z. G.

Windeler, R. S.

Wojtkowski, M.

Yang, C. H.

Yuan, Z. J.

Yun, S. H.

Zvyagin, A. V.

Appl. Opt. (4)

Electron. Lett. (1)

E. Brinkmeyer, A. Kohlhaas, and C. Fromchen, "Efficient algorithm for nonequidistant interpolation of sampled data," Electron. Lett. 28, 693-695 (1992).
[CrossRef]

J. Biomed. Opt. (3)

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, "Dispersion effects in partial coherence interferometry: implications for intraocular ranging," J. Biomed. Opt. 4, 144-151 (1999).
[CrossRef]

M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 044009 (2005).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

A. Kohlhaas, C. Fromchen, and E. Brinkmeyer, "High-resolution ocdr for testing integrated-optical wave-guides-dispersion-corrupted experimental-data corrected by a numerical algorithm," J. Lightwave Technol. 9, 1493-1502 (1991).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. Part 1 (1)

D. Choi, H. Hiko-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain-reffectometry optical coherence tomography," Jpn. J. Appl. Phys. Part 1 45, 6022-6027 (2006).
[CrossRef]

Nature Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Opt. Express (8)

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

M. V. Sarunic, M. A. Choma, C. H. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3 × 3 fiber couplers," Opt. Express 13, 957-967 (2005).
[CrossRef] [PubMed]

T. R. Hillman and D. D. Sampson, "The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography," Opt. Express 13, 1860-1874 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
[CrossRef] [PubMed]

Z. G. Wang, Z. J. Yuan, H. Y. Wang, and Y. T. Pan, "Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique," Opt. Express 14, 7014-7023 (2006).
[CrossRef] [PubMed]

Y. M. Wang, J. S. Nelson, Z. P. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003).
[CrossRef] [PubMed]

A. R. Tumlinson, J. K. Barton, B. Považay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1878-1887 (2006).
[CrossRef] [PubMed]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) Spectrum versus distance plot is a tool to visualize the function of FD-OCT systems and holistically interpret dispersion. Each horizontal row corresponds to a single optical frequency, and each vertical column corresponds to a single depth of a mirror in the sample arm away from a zero delay reference position. A light pixel corresponds to in-phase constructive interference, while dark corresponds to destructive interference. Long wavelengths, at the top of the diagram, are associated with a slow periodicity of interference as the delay increases. Short wavelengths, at the bottom, are associated with higher frequency periodicity with increasing delay. The lower curve is an integration of all pixels across the spectrum and illustrates a relationship between time domain and frequency domain signals. Note that this integration was performed without a strict normalization for power across a Gaussian spectrum and is therefore somewhat qualitative.

Fig. 2
Fig. 2

Panel of four spectra versus distance plots calculated at increasing amounts of system dispersion mismatch (outside of the imaging range) shows that the spatial frequency associated with each optical frequency is unchanged, but a constant nonlinear phase offset is added. Each panel is calculated with an unbalanced amount of fused silica (FS) in the sample arm, and a path length compensating amount of air (A) in the reference arm: (a) FS = 0.0   mm , A = 0.0   mm ; (b) FS = 0.5   mm , A = 0.735   mm ; (c) FS = 1.0   mm , A = 1.469   mm ; (d) FS = 1.5   mm , A = 2.204   mm .

Fig. 3
Fig. 3

(Color online) Panel of spectrum versus distance plots calculated at different media dispersions (inside of the imaging range) shows that the phase at zero delay remains flat, but that the spatial frequency associated with each optical frequency is variable. The index curve for each material is shown to the left of the spectrum versus distance plot: (a) air or vacuum; (b) a material of constant index = 1.7 ; (c) dispersion that is linear with wavelength; (d) an exaggerated form of a typical dispersion curve in which index increases faster than linear with decreasing wavelength.

Fig. 4
Fig. 4

(Color online) Simulated A-scans in water [light source: 800 nm center wavelength and 200 nm bandwidth (FWHM)] show how water dispersion at 1 mm imaging depth causes dramatic degradation of the axial resolution and signal intensity when sampled in ω-space that is not present with k-space sampling. At large delays, where the frequency of spectral modulation is close to the sampling limit, interpolation methods may distort the PSF or become very noisy. The plot at the top shows details of the PSF, while the lower plot is scaled to show better detail on the noise background created by each method.

Fig. 5
Fig. 5

(Color online) Diagram of experimental setup to test accurate k-sampling using discretely tunable source with modest ( 51   nm FWHM) bandwidth. The collected spectrum is modulated by interference of the two partially reflected wavefronts at the surfaces of the uncoated singlet lens separated by a thickness of material with well described dispersion. The Fizeau configuration eliminated the possibility of system dispersion, allowing us to isolate sample dispersion. A low dispersion (nBK7) singlet was used to accurately calibrate the output of the source, and a high dispersion (SF11) singlet was used to demonstrate dispersion compensation by accurate k-sampling.

Fig. 6
Fig. 6

(Color online) Comparison of simulated and experimental A-scans in high dispersion glass (SF11) show how accurate k-space sampling eliminates dispersion artifact associated with ω-space sampling at 3.8   mm imaging depth and 51   nm bandwidth (FWHM). Simulated and experimental A-scans are in very close agreement. FFT of data uniformly sampled spatial frequency results in an axial point spread of 5 .4   μm (FWHM), while FFT of data sampled uniformly in optical frequency results in FWHM broadening factor of 2.2. Significant ripple is an artifact of truncating the source spectrum at the limits of the tuning range where the source still has substantial power.

Tables (1)

Tables Icon

Table 1 Commonly Used Terms and Symbols and Their Definitions a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P det ( λ 0 , O P D ) = P r + P s + 2 P r × P s cos ( 2 π × O P D λ 0 ) ,
O P D = 2 × Δ z × n ω .
F ( t l ) = m = 0 N s 1 i ( ω m ) exp j 2 π t m / N s ,
F ( z l ) = m = 0 N s 1 i ( k m ) exp j 2 π z m / N s .
k = 2 π λ = 2 π n ω λ 0 = ω c n ω .

Metrics