Abstract

The Mach–Zehnder interferometer (MZI) is a common structure for integrated all-optical switches. We proposed and designed an all-optical 2×2 switch that is based on the MZI, multimode interference, and a nonlinear two-mode interference waveguide. The beam propagation method is used to simulate and analyze the device. The results show that the switching action is done properly.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photon. Technol. Lett. 14, 77-79 (2002).
    [CrossRef]
  2. I. K. Hwang, M. K. Kim, and Y. H. Lee, "All-optical switching in InGaAsP-InP photonic crystal resonator coupled with microfiber," IEEE Photon. Technol. Lett. 19, 1535-1537 (2007).
    [CrossRef]
  3. E. Tangdiongga, Y. Liu, H. de Waardt, G. D. Khoe, A. M. J. Koonen, and H. J. S. Dorren, "All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier," Opt. Lett. 32, 835-837 (2007).
    [CrossRef] [PubMed]
  4. A. Bananej and C. Li, "Controllable all-optical switch using an EDF-ring coupled M-Z interferometer," IEEE Photon. Technol. Lett. 16, 2102-2104 (2004).
    [CrossRef]
  5. G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, "All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photon. Technol. Lett. 18, 2439-2441 (2006).
    [CrossRef]
  6. Y. H. Kim, U. C. Paek, and W. T. Han, "All-optical 2 × 2 switching with two independent Yb3+-doped nonlinear optical fibers with a long-period fiber grating pair," Appl. Opt. 44, 3051-3057 (2005).
    [CrossRef] [PubMed]
  7. Y. Tian, X. Xiao, S. Gao, and C. Yang, "All-optical switch based on two-pump four-wave mixing in fibers without a frequency shift," Appl. Opt. 46, 5588-5592 (2007).
    [CrossRef] [PubMed]
  8. J. H. Lee, J. Y. Wang, C. C. Yang, and Y. W. Kiang, "All-optical switching behaviors in an all-semiconductor nonlinear loop device," J. Opt. Soc. Am. B 18, 1334-1341 (2001).
    [CrossRef]
  9. T. Simoyama, S. Sekiguchi, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, "Absorption dynamics in all-optical switch based on intersubband transition in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 19, 604-606 (2007).
    [CrossRef]
  10. J. Leuthold, P. A. Besse, E. Gamper, M. Dulk, W. Vogt, and H. Melchior, "Cascadable MZI all-optical switch with separate ports for data- and control-signals," in Proceedings of the 24th European Conference on Optical Communication (IEEE, 1998), pp. 463-464.
  11. A. Rostami, "Low threshold and tunable all-optical switch using-two-photon absorption in array of nonlinear ring resonators coupled to MZI," Microelectron. J. 37, 976-981 (2006).
    [CrossRef]
  12. J. Li, L. Li, L. Jin, and C. Li, "All-optical switch and limiter based on nonlinear polarization in Mach-Zehnder interferometer coupled with a polarization-maintaining fiber-ring resonator," Opt. Commun. 260, 318-323 (2006).
    [CrossRef]
  13. A. Teixeira, T. Silveira, P. Andre, R. Nogueira, G. Tosi-Bellefi, P. Monteiro, and J. Da Rocha, "All-optical switching with SOA based devices," in Proceedings of the International Conference on Advanced Optoelectronics and Lasers (CAOL) (IEEE, 2005), pp. 52-55.
    [CrossRef]
  14. Y. Fedoryshyn, P. Strasser, P. Ma, F. Robin, and H. Jäckel, "Optical waveguide structure for an all-optical switch based on intersubband transitions in InGaAs/AlAsSb quantum wells," Opt. Lett. 32, 2680-2682 (2007).
    [CrossRef] [PubMed]
  15. J. Leuthold, P. A. Besse, J. Eckner, E. Gamper, M. Dulk, and H. Melchior, "All-optical space switches with gain and principally ideal extinction ratios," IEEE J. Quantum Electron. 34, 622-633 (1998).
    [CrossRef]
  16. W. D. Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, "All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme," IEEE Photon. Technol. Lett. 19, 489-491 (2007).
    [CrossRef]
  17. J. Leuthold, P. Besse, E. Gamper, M. Dulk, S. Fischer, G. Guekos, and H. Melchior, "All-optical Mach-Zehnder interferometer wavelength converters and switches with integrated data- and control-signal separation scheme," J. Lightwave Technol. 17, 1056-1066 (1999).
    [CrossRef]
  18. K. Morito, J. Leuthold, and H. Melchior, "Dynamic analysis of MZI-SOA all-optical switches for balanced switching," in Proceedings of the 23rd European Conference on Optical Communications (IEEE, 1997), pp. 81-84.
  19. T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2002).
    [CrossRef]
  20. W. Samir, C. Pask, and S. J. Garth, "Signal switching by a control beam in a nonlinear coupler," J. Opt. Soc. Am. B 11, 2193-2205 (1994).
    [CrossRef]
  21. T. Fujisawa and M. Koshiba, "All-optical logic gates based on nonlinear slot-waveguide couplers," J. Opt. Soc. Am. B 23, 684-691 (2006).
    [CrossRef]
  22. L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-626 (1995).
    [CrossRef]
  23. L. B. Soldano and F. B. Veerman, "Planar monomode optical couplers based on multimode interference effects," J. Lightwave Technol. 10, 1843-1850 (1992).
    [CrossRef]
  24. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  25. F. Sun, J. Yu, and S. Chen, "A 2 × 2 optical switch based on plasma dispersion effect in silicon-on-insulator," Opt. Commun. 262, 164-169 (2006).
    [CrossRef]
  26. Y. Ucno, M. Takahashi, S. Nakamura, K. Suzuki, T. Shimizu, A. Furukawa, T. Tamanuki, K. Mori, S. Ac, T. Sasaki, and K. Tajima, "Control scheme for optimizing the interferometer phase bias in a symmetric-Mach-Zehnder-type all-optical," IEEE Photon. Technol. Lett. 14, 1692-1694 (2002).
    [CrossRef]
  27. A. Zakery and M. Hatami, "Nonlinear optical properties of pulsed-laser deposited GeAsSe films and simulation of a nonlinear directional coupler switch," J. Opt. Soc. Am. B 22, 591-597 (2005).
    [CrossRef]
  28. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  29. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2001), pp. 249-251.
  30. P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, "Optical bandwidth and fabrication tolerances of multimode interference couplers," J. Lightwave Technol. 12, 1004-1009 (1994).
    [CrossRef]
  31. Z. Jin and G. D. Peng, "Optimal design of N × N silica multimode interference couplers--an improved approach," Opt. Commun. 241, 299-308 (2004).
    [CrossRef]

2007

I. K. Hwang, M. K. Kim, and Y. H. Lee, "All-optical switching in InGaAsP-InP photonic crystal resonator coupled with microfiber," IEEE Photon. Technol. Lett. 19, 1535-1537 (2007).
[CrossRef]

E. Tangdiongga, Y. Liu, H. de Waardt, G. D. Khoe, A. M. J. Koonen, and H. J. S. Dorren, "All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier," Opt. Lett. 32, 835-837 (2007).
[CrossRef] [PubMed]

Y. Tian, X. Xiao, S. Gao, and C. Yang, "All-optical switch based on two-pump four-wave mixing in fibers without a frequency shift," Appl. Opt. 46, 5588-5592 (2007).
[CrossRef] [PubMed]

T. Simoyama, S. Sekiguchi, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, "Absorption dynamics in all-optical switch based on intersubband transition in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 19, 604-606 (2007).
[CrossRef]

Y. Fedoryshyn, P. Strasser, P. Ma, F. Robin, and H. Jäckel, "Optical waveguide structure for an all-optical switch based on intersubband transitions in InGaAs/AlAsSb quantum wells," Opt. Lett. 32, 2680-2682 (2007).
[CrossRef] [PubMed]

W. D. Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, "All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme," IEEE Photon. Technol. Lett. 19, 489-491 (2007).
[CrossRef]

2006

T. Fujisawa and M. Koshiba, "All-optical logic gates based on nonlinear slot-waveguide couplers," J. Opt. Soc. Am. B 23, 684-691 (2006).
[CrossRef]

A. Rostami, "Low threshold and tunable all-optical switch using-two-photon absorption in array of nonlinear ring resonators coupled to MZI," Microelectron. J. 37, 976-981 (2006).
[CrossRef]

J. Li, L. Li, L. Jin, and C. Li, "All-optical switch and limiter based on nonlinear polarization in Mach-Zehnder interferometer coupled with a polarization-maintaining fiber-ring resonator," Opt. Commun. 260, 318-323 (2006).
[CrossRef]

G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, "All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photon. Technol. Lett. 18, 2439-2441 (2006).
[CrossRef]

F. Sun, J. Yu, and S. Chen, "A 2 × 2 optical switch based on plasma dispersion effect in silicon-on-insulator," Opt. Commun. 262, 164-169 (2006).
[CrossRef]

2005

2004

A. Bananej and C. Li, "Controllable all-optical switch using an EDF-ring coupled M-Z interferometer," IEEE Photon. Technol. Lett. 16, 2102-2104 (2004).
[CrossRef]

Z. Jin and G. D. Peng, "Optimal design of N × N silica multimode interference couplers--an improved approach," Opt. Commun. 241, 299-308 (2004).
[CrossRef]

2002

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photon. Technol. Lett. 14, 77-79 (2002).
[CrossRef]

Y. Ucno, M. Takahashi, S. Nakamura, K. Suzuki, T. Shimizu, A. Furukawa, T. Tamanuki, K. Mori, S. Ac, T. Sasaki, and K. Tajima, "Control scheme for optimizing the interferometer phase bias in a symmetric-Mach-Zehnder-type all-optical," IEEE Photon. Technol. Lett. 14, 1692-1694 (2002).
[CrossRef]

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

2001

1999

1998

J. Leuthold, P. A. Besse, J. Eckner, E. Gamper, M. Dulk, and H. Melchior, "All-optical space switches with gain and principally ideal extinction ratios," IEEE J. Quantum Electron. 34, 622-633 (1998).
[CrossRef]

1995

L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-626 (1995).
[CrossRef]

1994

W. Samir, C. Pask, and S. J. Garth, "Signal switching by a control beam in a nonlinear coupler," J. Opt. Soc. Am. B 11, 2193-2205 (1994).
[CrossRef]

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, "Optical bandwidth and fabrication tolerances of multimode interference couplers," J. Lightwave Technol. 12, 1004-1009 (1994).
[CrossRef]

1992

L. B. Soldano and F. B. Veerman, "Planar monomode optical couplers based on multimode interference effects," J. Lightwave Technol. 10, 1843-1850 (1992).
[CrossRef]

Ac, S.

Y. Ucno, M. Takahashi, S. Nakamura, K. Suzuki, T. Shimizu, A. Furukawa, T. Tamanuki, K. Mori, S. Ac, T. Sasaki, and K. Tajima, "Control scheme for optimizing the interferometer phase bias in a symmetric-Mach-Zehnder-type all-optical," IEEE Photon. Technol. Lett. 14, 1692-1694 (2002).
[CrossRef]

Andre, P.

A. Teixeira, T. Silveira, P. Andre, R. Nogueira, G. Tosi-Bellefi, P. Monteiro, and J. Da Rocha, "All-optical switching with SOA based devices," in Proceedings of the International Conference on Advanced Optoelectronics and Lasers (CAOL) (IEEE, 2005), pp. 52-55.
[CrossRef]

Bachmann, M.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, "Optical bandwidth and fabrication tolerances of multimode interference couplers," J. Lightwave Technol. 12, 1004-1009 (1994).
[CrossRef]

Baets, R.

W. D. Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, "All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme," IEEE Photon. Technol. Lett. 19, 489-491 (2007).
[CrossRef]

Bananej, A.

A. Bananej and C. Li, "Controllable all-optical switch using an EDF-ring coupled M-Z interferometer," IEEE Photon. Technol. Lett. 16, 2102-2104 (2004).
[CrossRef]

Berrettini, G.

G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, "All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photon. Technol. Lett. 18, 2439-2441 (2006).
[CrossRef]

Besse, P.

Besse, P. A.

J. Leuthold, P. A. Besse, J. Eckner, E. Gamper, M. Dulk, and H. Melchior, "All-optical space switches with gain and principally ideal extinction ratios," IEEE J. Quantum Electron. 34, 622-633 (1998).
[CrossRef]

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, "Optical bandwidth and fabrication tolerances of multimode interference couplers," J. Lightwave Technol. 12, 1004-1009 (1994).
[CrossRef]

J. Leuthold, P. A. Besse, E. Gamper, M. Dulk, W. Vogt, and H. Melchior, "Cascadable MZI all-optical switch with separate ports for data- and control-signals," in Proceedings of the 24th European Conference on Optical Communication (IEEE, 1998), pp. 463-464.

Bogoni, A.

G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, "All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photon. Technol. Lett. 18, 2439-2441 (2006).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Buron, J.

W. D. Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, "All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme," IEEE Photon. Technol. Lett. 19, 489-491 (2007).
[CrossRef]

Chen, S.

F. Sun, J. Yu, and S. Chen, "A 2 × 2 optical switch based on plasma dispersion effect in silicon-on-insulator," Opt. Commun. 262, 164-169 (2006).
[CrossRef]

de Waardt, H.

Dorren, H. J. S.

Dulk, M.

J. Leuthold, P. Besse, E. Gamper, M. Dulk, S. Fischer, G. Guekos, and H. Melchior, "All-optical Mach-Zehnder interferometer wavelength converters and switches with integrated data- and control-signal separation scheme," J. Lightwave Technol. 17, 1056-1066 (1999).
[CrossRef]

J. Leuthold, P. A. Besse, J. Eckner, E. Gamper, M. Dulk, and H. Melchior, "All-optical space switches with gain and principally ideal extinction ratios," IEEE J. Quantum Electron. 34, 622-633 (1998).
[CrossRef]

J. Leuthold, P. A. Besse, E. Gamper, M. Dulk, W. Vogt, and H. Melchior, "Cascadable MZI all-optical switch with separate ports for data- and control-signals," in Proceedings of the 24th European Conference on Optical Communication (IEEE, 1998), pp. 463-464.

Eckner, J.

J. Leuthold, P. A. Besse, J. Eckner, E. Gamper, M. Dulk, and H. Melchior, "All-optical space switches with gain and principally ideal extinction ratios," IEEE J. Quantum Electron. 34, 622-633 (1998).
[CrossRef]

Fedoryshyn, Y.

Fiorentino, M.

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photon. Technol. Lett. 14, 77-79 (2002).
[CrossRef]

Fischer, S.

Fujisawa, T.

Furukawa, A.

Y. Ucno, M. Takahashi, S. Nakamura, K. Suzuki, T. Shimizu, A. Furukawa, T. Tamanuki, K. Mori, S. Ac, T. Sasaki, and K. Tajima, "Control scheme for optimizing the interferometer phase bias in a symmetric-Mach-Zehnder-type all-optical," IEEE Photon. Technol. Lett. 14, 1692-1694 (2002).
[CrossRef]

Gamper, E.

J. Leuthold, P. Besse, E. Gamper, M. Dulk, S. Fischer, G. Guekos, and H. Melchior, "All-optical Mach-Zehnder interferometer wavelength converters and switches with integrated data- and control-signal separation scheme," J. Lightwave Technol. 17, 1056-1066 (1999).
[CrossRef]

J. Leuthold, P. A. Besse, J. Eckner, E. Gamper, M. Dulk, and H. Melchior, "All-optical space switches with gain and principally ideal extinction ratios," IEEE J. Quantum Electron. 34, 622-633 (1998).
[CrossRef]

J. Leuthold, P. A. Besse, E. Gamper, M. Dulk, W. Vogt, and H. Melchior, "Cascadable MZI all-optical switch with separate ports for data- and control-signals," in Proceedings of the 24th European Conference on Optical Communication (IEEE, 1998), pp. 463-464.

Gao, S.

Garth, S. J.

Geshiro, M.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

Guekos, G.

Han, W. T.

Hatami, M.

Hwang, I. K.

I. K. Hwang, M. K. Kim, and Y. H. Lee, "All-optical switching in InGaAsP-InP photonic crystal resonator coupled with microfiber," IEEE Photon. Technol. Lett. 19, 1535-1537 (2007).
[CrossRef]

Ishikawa, H.

T. Simoyama, S. Sekiguchi, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, "Absorption dynamics in all-optical switch based on intersubband transition in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 19, 604-606 (2007).
[CrossRef]

Jäckel, H.

Jin, L.

J. Li, L. Li, L. Jin, and C. Li, "All-optical switch and limiter based on nonlinear polarization in Mach-Zehnder interferometer coupled with a polarization-maintaining fiber-ring resonator," Opt. Commun. 260, 318-323 (2006).
[CrossRef]

Jin, Z.

Z. Jin and G. D. Peng, "Optimal design of N × N silica multimode interference couplers--an improved approach," Opt. Commun. 241, 299-308 (2004).
[CrossRef]

Kasai, J.

T. Simoyama, S. Sekiguchi, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, "Absorption dynamics in all-optical switch based on intersubband transition in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 19, 604-606 (2007).
[CrossRef]

Khoe, G. D.

Kiang, Y. W.

Kim, M. K.

I. K. Hwang, M. K. Kim, and Y. H. Lee, "All-optical switching in InGaAsP-InP photonic crystal resonator coupled with microfiber," IEEE Photon. Technol. Lett. 19, 1535-1537 (2007).
[CrossRef]

Kim, Y. H.

Kitamura, T.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

Koonen, A. M. J.

Koshiba, M.

Kumar, P.

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photon. Technol. Lett. 14, 77-79 (2002).
[CrossRef]

Lee, J. H.

Lee, Y. H.

I. K. Hwang, M. K. Kim, and Y. H. Lee, "All-optical switching in InGaAsP-InP photonic crystal resonator coupled with microfiber," IEEE Photon. Technol. Lett. 19, 1535-1537 (2007).
[CrossRef]

Leuthold, J.

J. Leuthold, P. Besse, E. Gamper, M. Dulk, S. Fischer, G. Guekos, and H. Melchior, "All-optical Mach-Zehnder interferometer wavelength converters and switches with integrated data- and control-signal separation scheme," J. Lightwave Technol. 17, 1056-1066 (1999).
[CrossRef]

J. Leuthold, P. A. Besse, J. Eckner, E. Gamper, M. Dulk, and H. Melchior, "All-optical space switches with gain and principally ideal extinction ratios," IEEE J. Quantum Electron. 34, 622-633 (1998).
[CrossRef]

J. Leuthold, P. A. Besse, E. Gamper, M. Dulk, W. Vogt, and H. Melchior, "Cascadable MZI all-optical switch with separate ports for data- and control-signals," in Proceedings of the 24th European Conference on Optical Communication (IEEE, 1998), pp. 463-464.

K. Morito, J. Leuthold, and H. Melchior, "Dynamic analysis of MZI-SOA all-optical switches for balanced switching," in Proceedings of the 23rd European Conference on Optical Communications (IEEE, 1997), pp. 81-84.

Li, C.

J. Li, L. Li, L. Jin, and C. Li, "All-optical switch and limiter based on nonlinear polarization in Mach-Zehnder interferometer coupled with a polarization-maintaining fiber-ring resonator," Opt. Commun. 260, 318-323 (2006).
[CrossRef]

A. Bananej and C. Li, "Controllable all-optical switch using an EDF-ring coupled M-Z interferometer," IEEE Photon. Technol. Lett. 16, 2102-2104 (2004).
[CrossRef]

Li, J.

J. Li, L. Li, L. Jin, and C. Li, "All-optical switch and limiter based on nonlinear polarization in Mach-Zehnder interferometer coupled with a polarization-maintaining fiber-ring resonator," Opt. Commun. 260, 318-323 (2006).
[CrossRef]

Li, L.

J. Li, L. Li, L. Jin, and C. Li, "All-optical switch and limiter based on nonlinear polarization in Mach-Zehnder interferometer coupled with a polarization-maintaining fiber-ring resonator," Opt. Commun. 260, 318-323 (2006).
[CrossRef]

Liu, Y.

Ma, P.

Melchior, H.

J. Leuthold, P. Besse, E. Gamper, M. Dulk, S. Fischer, G. Guekos, and H. Melchior, "All-optical Mach-Zehnder interferometer wavelength converters and switches with integrated data- and control-signal separation scheme," J. Lightwave Technol. 17, 1056-1066 (1999).
[CrossRef]

J. Leuthold, P. A. Besse, J. Eckner, E. Gamper, M. Dulk, and H. Melchior, "All-optical space switches with gain and principally ideal extinction ratios," IEEE J. Quantum Electron. 34, 622-633 (1998).
[CrossRef]

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, "Optical bandwidth and fabrication tolerances of multimode interference couplers," J. Lightwave Technol. 12, 1004-1009 (1994).
[CrossRef]

K. Morito, J. Leuthold, and H. Melchior, "Dynamic analysis of MZI-SOA all-optical switches for balanced switching," in Proceedings of the 23rd European Conference on Optical Communications (IEEE, 1997), pp. 81-84.

J. Leuthold, P. A. Besse, E. Gamper, M. Dulk, W. Vogt, and H. Melchior, "Cascadable MZI all-optical switch with separate ports for data- and control-signals," in Proceedings of the 24th European Conference on Optical Communication (IEEE, 1998), pp. 463-464.

Meloni, G.

G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, "All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photon. Technol. Lett. 18, 2439-2441 (2006).
[CrossRef]

Monteiro, P.

A. Teixeira, T. Silveira, P. Andre, R. Nogueira, G. Tosi-Bellefi, P. Monteiro, and J. Da Rocha, "All-optical switching with SOA based devices," in Proceedings of the International Conference on Advanced Optoelectronics and Lasers (CAOL) (IEEE, 2005), pp. 52-55.
[CrossRef]

Mori, K.

Y. Ucno, M. Takahashi, S. Nakamura, K. Suzuki, T. Shimizu, A. Furukawa, T. Tamanuki, K. Mori, S. Ac, T. Sasaki, and K. Tajima, "Control scheme for optimizing the interferometer phase bias in a symmetric-Mach-Zehnder-type all-optical," IEEE Photon. Technol. Lett. 14, 1692-1694 (2002).
[CrossRef]

Morito, K.

K. Morito, J. Leuthold, and H. Melchior, "Dynamic analysis of MZI-SOA all-optical switches for balanced switching," in Proceedings of the 23rd European Conference on Optical Communications (IEEE, 1997), pp. 81-84.

Morthier, G.

W. D. Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, "All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme," IEEE Photon. Technol. Lett. 19, 489-491 (2007).
[CrossRef]

Mozume, T.

T. Simoyama, S. Sekiguchi, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, "Absorption dynamics in all-optical switch based on intersubband transition in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 19, 604-606 (2007).
[CrossRef]

Nakamura, S.

Y. Ucno, M. Takahashi, S. Nakamura, K. Suzuki, T. Shimizu, A. Furukawa, T. Tamanuki, K. Mori, S. Ac, T. Sasaki, and K. Tajima, "Control scheme for optimizing the interferometer phase bias in a symmetric-Mach-Zehnder-type all-optical," IEEE Photon. Technol. Lett. 14, 1692-1694 (2002).
[CrossRef]

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

Nishida, K.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

Nogueira, R.

A. Teixeira, T. Silveira, P. Andre, R. Nogueira, G. Tosi-Bellefi, P. Monteiro, and J. Da Rocha, "All-optical switching with SOA based devices," in Proceedings of the International Conference on Advanced Optoelectronics and Lasers (CAOL) (IEEE, 2005), pp. 52-55.
[CrossRef]

Öhman, F.

W. D. Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, "All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme," IEEE Photon. Technol. Lett. 19, 489-491 (2007).
[CrossRef]

Oosterlinck, W. D.

W. D. Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, "All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme," IEEE Photon. Technol. Lett. 19, 489-491 (2007).
[CrossRef]

Paek, U. C.

Pask, C.

Peng, G. D.

Z. Jin and G. D. Peng, "Optimal design of N × N silica multimode interference couplers--an improved approach," Opt. Commun. 241, 299-308 (2004).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-626 (1995).
[CrossRef]

Poti, L.

G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, "All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photon. Technol. Lett. 18, 2439-2441 (2006).
[CrossRef]

Robin, F.

Rocha, J. Da

A. Teixeira, T. Silveira, P. Andre, R. Nogueira, G. Tosi-Bellefi, P. Monteiro, and J. Da Rocha, "All-optical switching with SOA based devices," in Proceedings of the International Conference on Advanced Optoelectronics and Lasers (CAOL) (IEEE, 2005), pp. 52-55.
[CrossRef]

Rostami, A.

A. Rostami, "Low threshold and tunable all-optical switch using-two-photon absorption in array of nonlinear ring resonators coupled to MZI," Microelectron. J. 37, 976-981 (2006).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2001), pp. 249-251.

Samir, W.

Sasaki, T.

Y. Ucno, M. Takahashi, S. Nakamura, K. Suzuki, T. Shimizu, A. Furukawa, T. Tamanuki, K. Mori, S. Ac, T. Sasaki, and K. Tajima, "Control scheme for optimizing the interferometer phase bias in a symmetric-Mach-Zehnder-type all-optical," IEEE Photon. Technol. Lett. 14, 1692-1694 (2002).
[CrossRef]

Sawa, S.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

Sekiguchi, S.

T. Simoyama, S. Sekiguchi, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, "Absorption dynamics in all-optical switch based on intersubband transition in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 19, 604-606 (2007).
[CrossRef]

Sharping, J. E.

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photon. Technol. Lett. 14, 77-79 (2002).
[CrossRef]

Shimizu, T.

Y. Ucno, M. Takahashi, S. Nakamura, K. Suzuki, T. Shimizu, A. Furukawa, T. Tamanuki, K. Mori, S. Ac, T. Sasaki, and K. Tajima, "Control scheme for optimizing the interferometer phase bias in a symmetric-Mach-Zehnder-type all-optical," IEEE Photon. Technol. Lett. 14, 1692-1694 (2002).
[CrossRef]

Silveira, T.

A. Teixeira, T. Silveira, P. Andre, R. Nogueira, G. Tosi-Bellefi, P. Monteiro, and J. Da Rocha, "All-optical switching with SOA based devices," in Proceedings of the International Conference on Advanced Optoelectronics and Lasers (CAOL) (IEEE, 2005), pp. 52-55.
[CrossRef]

Simoyama, T.

T. Simoyama, S. Sekiguchi, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, "Absorption dynamics in all-optical switch based on intersubband transition in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 19, 604-606 (2007).
[CrossRef]

Smit, M. K.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, "Optical bandwidth and fabrication tolerances of multimode interference couplers," J. Lightwave Technol. 12, 1004-1009 (1994).
[CrossRef]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-626 (1995).
[CrossRef]

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, "Optical bandwidth and fabrication tolerances of multimode interference couplers," J. Lightwave Technol. 12, 1004-1009 (1994).
[CrossRef]

L. B. Soldano and F. B. Veerman, "Planar monomode optical couplers based on multimode interference effects," J. Lightwave Technol. 10, 1843-1850 (1992).
[CrossRef]

Strasser, P.

Sun, F.

F. Sun, J. Yu, and S. Chen, "A 2 × 2 optical switch based on plasma dispersion effect in silicon-on-insulator," Opt. Commun. 262, 164-169 (2006).
[CrossRef]

Suzuki, K.

Y. Ucno, M. Takahashi, S. Nakamura, K. Suzuki, T. Shimizu, A. Furukawa, T. Tamanuki, K. Mori, S. Ac, T. Sasaki, and K. Tajima, "Control scheme for optimizing the interferometer phase bias in a symmetric-Mach-Zehnder-type all-optical," IEEE Photon. Technol. Lett. 14, 1692-1694 (2002).
[CrossRef]

Tajima, K.

Y. Ucno, M. Takahashi, S. Nakamura, K. Suzuki, T. Shimizu, A. Furukawa, T. Tamanuki, K. Mori, S. Ac, T. Sasaki, and K. Tajima, "Control scheme for optimizing the interferometer phase bias in a symmetric-Mach-Zehnder-type all-optical," IEEE Photon. Technol. Lett. 14, 1692-1694 (2002).
[CrossRef]

Takahashi, M.

Y. Ucno, M. Takahashi, S. Nakamura, K. Suzuki, T. Shimizu, A. Furukawa, T. Tamanuki, K. Mori, S. Ac, T. Sasaki, and K. Tajima, "Control scheme for optimizing the interferometer phase bias in a symmetric-Mach-Zehnder-type all-optical," IEEE Photon. Technol. Lett. 14, 1692-1694 (2002).
[CrossRef]

Tamanuki, T.

Y. Ucno, M. Takahashi, S. Nakamura, K. Suzuki, T. Shimizu, A. Furukawa, T. Tamanuki, K. Mori, S. Ac, T. Sasaki, and K. Tajima, "Control scheme for optimizing the interferometer phase bias in a symmetric-Mach-Zehnder-type all-optical," IEEE Photon. Technol. Lett. 14, 1692-1694 (2002).
[CrossRef]

Tangdiongga, E.

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2001), pp. 249-251.

Teixeira, A.

A. Teixeira, T. Silveira, P. Andre, R. Nogueira, G. Tosi-Bellefi, P. Monteiro, and J. Da Rocha, "All-optical switching with SOA based devices," in Proceedings of the International Conference on Advanced Optoelectronics and Lasers (CAOL) (IEEE, 2005), pp. 52-55.
[CrossRef]

Tian, Y.

Tosi-Bellefi, G.

A. Teixeira, T. Silveira, P. Andre, R. Nogueira, G. Tosi-Bellefi, P. Monteiro, and J. Da Rocha, "All-optical switching with SOA based devices," in Proceedings of the International Conference on Advanced Optoelectronics and Lasers (CAOL) (IEEE, 2005), pp. 52-55.
[CrossRef]

Ucno, Y.

Y. Ucno, M. Takahashi, S. Nakamura, K. Suzuki, T. Shimizu, A. Furukawa, T. Tamanuki, K. Mori, S. Ac, T. Sasaki, and K. Tajima, "Control scheme for optimizing the interferometer phase bias in a symmetric-Mach-Zehnder-type all-optical," IEEE Photon. Technol. Lett. 14, 1692-1694 (2002).
[CrossRef]

Veerman, F. B.

L. B. Soldano and F. B. Veerman, "Planar monomode optical couplers based on multimode interference effects," J. Lightwave Technol. 10, 1843-1850 (1992).
[CrossRef]

Vogt, W.

J. Leuthold, P. A. Besse, E. Gamper, M. Dulk, W. Vogt, and H. Melchior, "Cascadable MZI all-optical switch with separate ports for data- and control-signals," in Proceedings of the 24th European Conference on Optical Communication (IEEE, 1998), pp. 463-464.

Wang, J. Y.

Windeler, R. S.

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photon. Technol. Lett. 14, 77-79 (2002).
[CrossRef]

Xiao, X.

Yabu, T.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

Yang, C.

Yang, C. C.

Yoshida, H.

T. Simoyama, S. Sekiguchi, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, "Absorption dynamics in all-optical switch based on intersubband transition in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 19, 604-606 (2007).
[CrossRef]

Yu, J.

F. Sun, J. Yu, and S. Chen, "A 2 × 2 optical switch based on plasma dispersion effect in silicon-on-insulator," Opt. Commun. 262, 164-169 (2006).
[CrossRef]

Zakery, A.

Appl. Opt.

IEEE J. Quantum Electron.

J. Leuthold, P. A. Besse, J. Eckner, E. Gamper, M. Dulk, and H. Melchior, "All-optical space switches with gain and principally ideal extinction ratios," IEEE J. Quantum Electron. 34, 622-633 (1998).
[CrossRef]

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

W. D. Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, "All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme," IEEE Photon. Technol. Lett. 19, 489-491 (2007).
[CrossRef]

T. Simoyama, S. Sekiguchi, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, "Absorption dynamics in all-optical switch based on intersubband transition in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 19, 604-606 (2007).
[CrossRef]

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photon. Technol. Lett. 14, 77-79 (2002).
[CrossRef]

I. K. Hwang, M. K. Kim, and Y. H. Lee, "All-optical switching in InGaAsP-InP photonic crystal resonator coupled with microfiber," IEEE Photon. Technol. Lett. 19, 1535-1537 (2007).
[CrossRef]

A. Bananej and C. Li, "Controllable all-optical switch using an EDF-ring coupled M-Z interferometer," IEEE Photon. Technol. Lett. 16, 2102-2104 (2004).
[CrossRef]

G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, "All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photon. Technol. Lett. 18, 2439-2441 (2006).
[CrossRef]

Y. Ucno, M. Takahashi, S. Nakamura, K. Suzuki, T. Shimizu, A. Furukawa, T. Tamanuki, K. Mori, S. Ac, T. Sasaki, and K. Tajima, "Control scheme for optimizing the interferometer phase bias in a symmetric-Mach-Zehnder-type all-optical," IEEE Photon. Technol. Lett. 14, 1692-1694 (2002).
[CrossRef]

J. Lightwave Technol.

L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-626 (1995).
[CrossRef]

L. B. Soldano and F. B. Veerman, "Planar monomode optical couplers based on multimode interference effects," J. Lightwave Technol. 10, 1843-1850 (1992).
[CrossRef]

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, "Optical bandwidth and fabrication tolerances of multimode interference couplers," J. Lightwave Technol. 12, 1004-1009 (1994).
[CrossRef]

J. Leuthold, P. Besse, E. Gamper, M. Dulk, S. Fischer, G. Guekos, and H. Melchior, "All-optical Mach-Zehnder interferometer wavelength converters and switches with integrated data- and control-signal separation scheme," J. Lightwave Technol. 17, 1056-1066 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Microelectron. J.

A. Rostami, "Low threshold and tunable all-optical switch using-two-photon absorption in array of nonlinear ring resonators coupled to MZI," Microelectron. J. 37, 976-981 (2006).
[CrossRef]

Opt. Commun.

J. Li, L. Li, L. Jin, and C. Li, "All-optical switch and limiter based on nonlinear polarization in Mach-Zehnder interferometer coupled with a polarization-maintaining fiber-ring resonator," Opt. Commun. 260, 318-323 (2006).
[CrossRef]

F. Sun, J. Yu, and S. Chen, "A 2 × 2 optical switch based on plasma dispersion effect in silicon-on-insulator," Opt. Commun. 262, 164-169 (2006).
[CrossRef]

Z. Jin and G. D. Peng, "Optimal design of N × N silica multimode interference couplers--an improved approach," Opt. Commun. 241, 299-308 (2004).
[CrossRef]

Opt. Lett.

Other

J. Leuthold, P. A. Besse, E. Gamper, M. Dulk, W. Vogt, and H. Melchior, "Cascadable MZI all-optical switch with separate ports for data- and control-signals," in Proceedings of the 24th European Conference on Optical Communication (IEEE, 1998), pp. 463-464.

A. Teixeira, T. Silveira, P. Andre, R. Nogueira, G. Tosi-Bellefi, P. Monteiro, and J. Da Rocha, "All-optical switching with SOA based devices," in Proceedings of the International Conference on Advanced Optoelectronics and Lasers (CAOL) (IEEE, 2005), pp. 52-55.
[CrossRef]

K. Morito, J. Leuthold, and H. Melchior, "Dynamic analysis of MZI-SOA all-optical switches for balanced switching," in Proceedings of the 23rd European Conference on Optical Communications (IEEE, 1997), pp. 81-84.

R. W. Boyd, Nonlinear Optics (Academic, 2003).

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2001), pp. 249-251.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Illustration of a general structure of a 2 × 2 MMI device.

Fig. 2
Fig. 2

BPM simulation results for a 3   dB MMI coupler. (a) Phase difference between the input beams is π / 2 and constructive image created at port 2, (b) phase difference between the input beams is 3 π / 2 and constructive image created at port 1.

Fig. 3
Fig. 3

Illustration of a general structure for a TMI waveguide.

Fig. 4
Fig. 4

Configuration of the proposed 2 × 2 all-optical MZI-based switch that consists of two MMI as splitter and combiner and a nonlinear TMI waveguide as an all-optical X-phase modulator.

Fig. 5
Fig. 5

Schematic of the proposed devices: (a) all-optical switch, (b) all-optical modulator.

Fig. 6
Fig. 6

Various situations of the switch: (a) and (c) the control signal is OFF and, therefore, the switch is in bar state, (b) and (d) the control signal is ON and the switch is in cross state, (e) the control signal travels through the nonlinear TMI waveguide and modifies its refractive index.

Fig. 7
Fig. 7

Transmittance of switch at bar and cross states versus control power when the data signal launched into input ports (a) 1 and (b) 2.

Fig. 8
Fig. 8

Output power versus the data-signal wavelengths, when the data signal is launched to ports (a) 1 and (b) 2, control signal is OFF (solid curves), control signal is ON (dashed curves).

Fig. 9
Fig. 9

Effects of tolerances of MMI (a) width and (b) length on the switching operation.

Fig. 10
Fig. 10

Effect of tolerance of refractive index on the switching operation.

Tables (1)

Tables Icon

Table 1 Insertion Loss and Extinction Ratio of the Switch at Various Situations

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

L π 4 n r W e 2 3 λ ,
W e = W + ( λ 0 π ) ( n r 2 n c 2 ) ( 1 / 2 ) ,
  φ r s = π 4 N ( s 1 ) ( 2 N + r s ) + π   for   ( r + s )   even ,
φ r s = π 4 N ( r + s 1 ) ( 2 N r s + 1 )   for   ( r + s )   odd ,
n ( I ) = n + Δ n = n + n 2 I ,
φ m = 2 π n ( I ) L / λ 0 ,
= 2 π ( n + n 2 P / A ) L / λ 0 ,
= φ + Δ φ ,
Δ φ = 2 π n 2 L A λ 0 P .
M = 2 W λ ( n r 2 n c 2 ) 1 / 2 ,
L MMI = ( 2 q + 1 / 2 ) ( 3 L π ) = ( 3 / 2 ) L π MMI = 2070 μ m ,
I.L. ( dB ) = 10 log 10 ( P out P in ) .
Ex.R .   ( dB ) j O F F = 10 log 10 ( P =, j P X , j ) | P C = O F F ,
Ex.R. ( dB ) j ON = 10 log 10 ( P X , j P = , j ) | P C = O N ,

Metrics