Abstract

We describe a series of experiments to demonstrate holography at far-infrared wavelengths using an uncooled microbolometer array. Simple interference patterns and Fresnel zone holograms are recorded with a 10WcwCO2 laser illumination in a Mach–Zehnder interferometer setup. A sparse-sampling method is used to sample the hologram at a rate dependent on the bandwidth of the object wavefront rather than the carrier frequency. The samples are then used to reconstruct the complex object wavefront in the hologram plane, which is Fresnel backpropagated for image reconstruction. Uncooled microbolometer arrays are most commonly used in passive mode to image the thermal–blackbody radiation. Their technology has matured to include the wavelength range of far-infrared to submillimeter radiation. The use of microbolometers with active illumination for holography, as described in this paper, suggests their interesting future applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. N. Leith and J. Upatnieks, "Reconstructed wavefronts and communication theory," J. Opt. Soc. Am. 52, 1123-1130 (1962).
    [CrossRef]
  2. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer-Verlag, 2007).
    [PubMed]
  3. L. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer Academic, 2003).
  4. E. Leith, H. Chen, Y. Chen, D. Dilworth, J. Lopez, R. Masri, J. Rudd, and J. Valdmanis, "Imaging through tissues with electronic holography and femtosecond pulses," Proc. SPIE 1600, 172-177 (1991).
    [CrossRef]
  5. E. Tajahuerce and B. Javidi, "Encrypting three-dimensional information with digital holography," Appl. Opt. 39, 6595-6601 (2000).
    [CrossRef]
  6. I. Yamaguchi, T. Matsumura, and J. Kato, "Phase-shifting color digital holography," Opt. Lett. 27, 1108-1110 (2002).
    [CrossRef]
  7. R. M. Beaulieu and R. A. Lessard, "Review of recording media for holography at 10.6 microns," Proc. SPIE 3011, 298-305 (1997).
    [CrossRef]
  8. J. S. Chivian, R. N. Claytor, and D. D. Eden, "Infrared holography at 10.6 μm," Appl. Phys. Lett. 15, 123-125 (1969).
    [CrossRef]
  9. T. Izawa and M. Kamiyama, "Infrared holography with organic photochromic films," Appl. Phys. Lett. 15, 201-201 (1969).
    [CrossRef]
  10. O. Kwon, J. C. Wyant, and C. R. Hayslett, "Rough surface interferometry at 10.6 μm," Appl. Opt. 19, 1862-1869 (1980).
    [CrossRef] [PubMed]
  11. P. W. Kruse and D. D. Skatrud, Uncooled Infrared Imaging Arrays and Systems (Academic, 1997), Vol. 47.
  12. Thermal-Eye, Model 2000B, barium strontium titanate (320 × 240 pixel array), L3 Communications Infrared Products, Dallas, Tex, USA.
  13. E. Allaria, S. Brugioni, S. D. Nicolas, P. Ferraro, S. Grilli, and R. Meucci, "Digital holography at 10.6 μm," Opt. Commun. 215, 257-262 (2003).
    [CrossRef]
  14. N. George, K. Khare, and W. Chi, "Electronic holography at terahertz and infrared frequencies," in Proceedings of the Seventh International Symposium on Display Holography, H. I. Bjelkhagen, ed. (River Valley, 2006), pp. 117-119.
  15. N. George, K. Khare, and W. Chi, "Long-wave infrared holography using a microbolometer array," presented at the Annual Meeting of the Optical Society of America, Rochester, New York, 8-12 October 2006.
  16. K. Khare and N. George, "Direct sampling and demodulation of carrier-frequency signals," Opt. Commun. 211, 85-94 (2002).
    [CrossRef]
  17. K. Khare and N. George, "Direct coarse sampling of electronic holograms," Opt. Lett. 28, 1004-1006 (2003).
    [CrossRef] [PubMed]

2003 (2)

E. Allaria, S. Brugioni, S. D. Nicolas, P. Ferraro, S. Grilli, and R. Meucci, "Digital holography at 10.6 μm," Opt. Commun. 215, 257-262 (2003).
[CrossRef]

K. Khare and N. George, "Direct coarse sampling of electronic holograms," Opt. Lett. 28, 1004-1006 (2003).
[CrossRef] [PubMed]

2002 (2)

K. Khare and N. George, "Direct sampling and demodulation of carrier-frequency signals," Opt. Commun. 211, 85-94 (2002).
[CrossRef]

I. Yamaguchi, T. Matsumura, and J. Kato, "Phase-shifting color digital holography," Opt. Lett. 27, 1108-1110 (2002).
[CrossRef]

2000 (1)

1997 (1)

R. M. Beaulieu and R. A. Lessard, "Review of recording media for holography at 10.6 microns," Proc. SPIE 3011, 298-305 (1997).
[CrossRef]

1991 (1)

E. Leith, H. Chen, Y. Chen, D. Dilworth, J. Lopez, R. Masri, J. Rudd, and J. Valdmanis, "Imaging through tissues with electronic holography and femtosecond pulses," Proc. SPIE 1600, 172-177 (1991).
[CrossRef]

1980 (1)

1969 (2)

J. S. Chivian, R. N. Claytor, and D. D. Eden, "Infrared holography at 10.6 μm," Appl. Phys. Lett. 15, 123-125 (1969).
[CrossRef]

T. Izawa and M. Kamiyama, "Infrared holography with organic photochromic films," Appl. Phys. Lett. 15, 201-201 (1969).
[CrossRef]

1962 (1)

Appl. Opt. (2)

Appl. Phys. Lett. (2)

J. S. Chivian, R. N. Claytor, and D. D. Eden, "Infrared holography at 10.6 μm," Appl. Phys. Lett. 15, 123-125 (1969).
[CrossRef]

T. Izawa and M. Kamiyama, "Infrared holography with organic photochromic films," Appl. Phys. Lett. 15, 201-201 (1969).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (2)

E. Allaria, S. Brugioni, S. D. Nicolas, P. Ferraro, S. Grilli, and R. Meucci, "Digital holography at 10.6 μm," Opt. Commun. 215, 257-262 (2003).
[CrossRef]

K. Khare and N. George, "Direct sampling and demodulation of carrier-frequency signals," Opt. Commun. 211, 85-94 (2002).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (2)

R. M. Beaulieu and R. A. Lessard, "Review of recording media for holography at 10.6 microns," Proc. SPIE 3011, 298-305 (1997).
[CrossRef]

E. Leith, H. Chen, Y. Chen, D. Dilworth, J. Lopez, R. Masri, J. Rudd, and J. Valdmanis, "Imaging through tissues with electronic holography and femtosecond pulses," Proc. SPIE 1600, 172-177 (1991).
[CrossRef]

Other (6)

N. George, K. Khare, and W. Chi, "Electronic holography at terahertz and infrared frequencies," in Proceedings of the Seventh International Symposium on Display Holography, H. I. Bjelkhagen, ed. (River Valley, 2006), pp. 117-119.

N. George, K. Khare, and W. Chi, "Long-wave infrared holography using a microbolometer array," presented at the Annual Meeting of the Optical Society of America, Rochester, New York, 8-12 October 2006.

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer-Verlag, 2007).
[PubMed]

L. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer Academic, 2003).

P. W. Kruse and D. D. Skatrud, Uncooled Infrared Imaging Arrays and Systems (Academic, 1997), Vol. 47.

Thermal-Eye, Model 2000B, barium strontium titanate (320 × 240 pixel array), L3 Communications Infrared Products, Dallas, Tex, USA.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram showing Fourier-transform-based processing of electronic holograms. FFT, fast Fourier transform; IFFT, inverse fast Fourier transform.

Fig. 2
Fig. 2

Setup for infrared digital holography: A, attenuator; m, mirror; BS, beam splitter; P, picture wavefront; R, reference beam; D, display.

Fig. 3
Fig. 3

Two-beam interference pattern recorded on a microbolometer array: (a) two-beam angle 0.3 deg; (b) two-beam angle 1 deg.

Fig. 4
Fig. 4

Interference of an expanding wave and a plane wave.

Fig. 5
Fig. 5

Experimental recovery of a hologram of a transmissive object: (a) recorded diffraction pattern with only the object arm, (b) recorded plane wave pattern with only the reference arm, (c) recorded off-axis hologram, (d) recovery at the sparse-sampling interval.

Fig. 6
Fig. 6

Image recovery using (a) one set of sparse samples and (b) averaging recoveries from four independent sample sets.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

g ( x , y ) = E o ( x , y ) exp ( i 2 π f o x ) + E o * ( x , y ) exp ( i 2 π f o x ) .
f o 2 B x o = N + 1 2 ,
    g ( x , y ) = m = n = g ( m 4 B x o , n 2 B y o ) sinc [ 2 B x o ( x m 4 B x o ) ] × sinc [ 2 B y o ( y n 2 B y o ) ] cos [ 2 π f o ( x m 4 B x o ) ] ,
E o ( x , y ) = 1 2 m = n = g ( m 4 B x o , n 2 B y o ) sinc [ 2 B x o ( x m 4 B x o ) ] × sinc [ 2 B y o ( y n 4 B y o ) ] exp ( i 2 π f o m 4 B x o ) .
exp ( i 2 π f o m 4 B x o ) = ( 1 ) m N ( i ) m ,
I d = | E o + exp ( i 2 π f o x ) | 2 .
E o b j ( x , y ) = i   exp ( i 2 π z / λ ) λ z d x d y E o ( x , y ) × exp { i π λ z [ ( x x ) 2 + ( y y ) 2 ] } .

Metrics