Abstract

We define a nonlinear filtering based on correlations on unit spheres to obtain both rotation- and scale-invariant three-dimensional (3D) object detection. Tridimensionality is expressed in terms of range images. The phase Fourier transform (PhFT) of a range image provides information about the orientations of the 3D object surfaces. When the object is sequentially rotated, the amplitudes of the different PhFTs form a unit radius sphere. On the other hand, a scale change is equivalent to a multiplication of the amplitude of the PhFT by a constant factor. The effect of both rotation and scale changes for 3D objects means a change in the intensity of the unit radius sphere. We define a 3D filtering based on nonlinear operations between spherical correlations to achieve both scale- and rotation-invariant 3D object recognition.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription