Abstract

The process of second harmonic generation (SHG) has a unique property of forming a sharp optical contrast between noncentrosymmetric crystalline materials and other types of material, which is a highly valuable asset for contrast microscopy. The coherent signal obtained through SHG also allows for the recording of holograms at high spatial and temporal resolution, enabling whole-field four-dimensional microscopy for highly dynamic microsystems and nanosystems. Here we describe a new holographic principle, harmonic holography (H 2), which records holograms between independently generated second harmonic signals and reference. We experimentally demonstrate this technique with digital holographic recording of second harmonic signals upconverted from an ensemble of second harmonic generating nanocrystal clusters under femtosecond laser excitation. Our results show that harmonic holography is uniquely suited for ultrafast four-dimensional contrast microscopy.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. M. Whitesides, "The 'right' size in nanobiotechnology," Nat. Biotechnol. 21, 1161-1165 (2003).
    [CrossRef] [PubMed]
  2. E. B. Brauns, M. L. Madaras, R. S. Coleman, C. J. Murphy, and M. A. Berg, "Complex local dynamics in DNA on the picosecond and nanosecond time scales," Phys. Rev. Lett. 88, 158101 (2002).
    [CrossRef] [PubMed]
  3. R. Gilmanshin, S. Williams, R. H. Callender, W. H. Woodruff, and R. B. Dyer, "Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin," Proc. Natl. Acad. Sci. USA 94, 3709-3713 (1997).
    [CrossRef] [PubMed]
  4. D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
    [CrossRef] [PubMed]
  5. E. N. Leith and J. Upatniek, "Wavefront reconstruction with diffused illumination + 3-dimensional objects," J. Opt. Soc. Am. 54, 1295-1301 (1964).
    [CrossRef]
  6. E. N. Leith, J. Upatniek, and K. A. Haines, "Microscopy by wavefront reconstruction," J. Opt. Soc. Am. 55, 981-986 (1965).
    [CrossRef]
  7. U. Schnars and W. Juptner, "Direct recording of holograms by a ccd target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994).
    [CrossRef] [PubMed]
  8. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef] [PubMed]
  9. E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999).
    [CrossRef]
  10. F. Dubois, L. Joannes, and J. C. Legros, "Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence," Appl. Opt. 38, 7085-7094 (1999).
    [CrossRef]
  11. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, "Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy," Opt. Lett. 30, 468-470 (2005).
    [CrossRef] [PubMed]
  12. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, "Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram," Appl. Phys. Lett. 90, 041104 (2007).
    [CrossRef]
  13. L. Toth and S. A. Collins, "Reconstruction of a 3-dimensional microscopic sample using holographic techniques," Appl. Phys. Lett. 13, 7-9 (1968).
    [CrossRef]
  14. W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, "Tracking particles in four dimensions with in-line holographic microscopy," Opt. Lett. 28, 164-166 (2003).
    [CrossRef] [PubMed]
  15. T. Zhang and I. Yamaguchi, "Three-dimensional microscopy with phase-shifting digital holography," Opt. Lett. 23, 1221-1223 (1998).
    [CrossRef]
  16. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, "Image formation in phase-shifting digital holography and applications to microscopy," Appl. Opt. 40, 6177-6186 (2001).
    [CrossRef]
  17. Y. Pu and H. Meng, "Four-dimensional dynamic flow measurement by holographic particle image velocimetry," Appl. Opt. 44, 7697-7708 (2005).
    [CrossRef] [PubMed]
  18. D. Gerlich and J. Ellenberg, "4D imaging to assay complex dynamics in live specimens," Nat. Cell Biol. 5, S14-S19 (2003).
  19. P. J. Campagnola and L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-1360 (2003).
    [CrossRef] [PubMed]
  20. A. Andreoni, M. Bondani, M. A. C. Potenza, and Y. N. Denisyuk, "Holographic properties of the second-harmonic cross correlation of object and reference optical wave fields," J. Opt. Soc. Am. B 17, 966-972 (2000).
    [CrossRef]
  21. G. Pedrini, S. Schedin, and H. J. Tiziani, "Aberration compensation in digital holographic reconstruction of microscopic objects," J. Mod. Opt. 48, 1035-1041 (2001).
  22. F. Charriere, T. Colomb, F. Montfort, E. Cuche, P. Marquet, and C. Depeursinge, "Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy," Appl. Opt. 45, 7667-7673 (2006).
    [CrossRef] [PubMed]
  23. R. W. Boyd, Nonlinear Optics (Academic, 2002).
  24. U. Schnars and W. P. O. Juptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
    [CrossRef]
  25. Y. Pu and H. Meng, "Intrinsic aberrations due to mie scattering in particle holography," J. Opt. Soc. Am. A 20, 1920-1932 (2003).
    [CrossRef]

2007

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, "Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram," Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

2006

2005

2003

W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, "Tracking particles in four dimensions with in-line holographic microscopy," Opt. Lett. 28, 164-166 (2003).
[CrossRef] [PubMed]

G. M. Whitesides, "The 'right' size in nanobiotechnology," Nat. Biotechnol. 21, 1161-1165 (2003).
[CrossRef] [PubMed]

D. Gerlich and J. Ellenberg, "4D imaging to assay complex dynamics in live specimens," Nat. Cell Biol. 5, S14-S19 (2003).

P. J. Campagnola and L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-1360 (2003).
[CrossRef] [PubMed]

Y. Pu and H. Meng, "Intrinsic aberrations due to mie scattering in particle holography," J. Opt. Soc. Am. A 20, 1920-1932 (2003).
[CrossRef]

2002

U. Schnars and W. P. O. Juptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

E. B. Brauns, M. L. Madaras, R. S. Coleman, C. J. Murphy, and M. A. Berg, "Complex local dynamics in DNA on the picosecond and nanosecond time scales," Phys. Rev. Lett. 88, 158101 (2002).
[CrossRef] [PubMed]

2001

I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, "Image formation in phase-shifting digital holography and applications to microscopy," Appl. Opt. 40, 6177-6186 (2001).
[CrossRef]

G. Pedrini, S. Schedin, and H. J. Tiziani, "Aberration compensation in digital holographic reconstruction of microscopic objects," J. Mod. Opt. 48, 1035-1041 (2001).

2000

1999

1998

1997

R. Gilmanshin, S. Williams, R. H. Callender, W. H. Woodruff, and R. B. Dyer, "Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin," Proc. Natl. Acad. Sci. USA 94, 3709-3713 (1997).
[CrossRef] [PubMed]

I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
[CrossRef] [PubMed]

1994

1968

L. Toth and S. A. Collins, "Reconstruction of a 3-dimensional microscopic sample using holographic techniques," Appl. Phys. Lett. 13, 7-9 (1968).
[CrossRef]

1965

E. N. Leith, J. Upatniek, and K. A. Haines, "Microscopy by wavefront reconstruction," J. Opt. Soc. Am. 55, 981-986 (1965).
[CrossRef]

1964

E. N. Leith and J. Upatniek, "Wavefront reconstruction with diffused illumination + 3-dimensional objects," J. Opt. Soc. Am. 54, 1295-1301 (1964).
[CrossRef]

1948

D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, "Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram," Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

L. Toth and S. A. Collins, "Reconstruction of a 3-dimensional microscopic sample using holographic techniques," Appl. Phys. Lett. 13, 7-9 (1968).
[CrossRef]

J. Mod. Opt.

G. Pedrini, S. Schedin, and H. J. Tiziani, "Aberration compensation in digital holographic reconstruction of microscopic objects," J. Mod. Opt. 48, 1035-1041 (2001).

J. Opt. Soc. Am.

E. N. Leith and J. Upatniek, "Wavefront reconstruction with diffused illumination + 3-dimensional objects," J. Opt. Soc. Am. 54, 1295-1301 (1964).
[CrossRef]

E. N. Leith, J. Upatniek, and K. A. Haines, "Microscopy by wavefront reconstruction," J. Opt. Soc. Am. 55, 981-986 (1965).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Meas. Sci. Technol.

U. Schnars and W. P. O. Juptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Nat. Biotechnol.

G. M. Whitesides, "The 'right' size in nanobiotechnology," Nat. Biotechnol. 21, 1161-1165 (2003).
[CrossRef] [PubMed]

P. J. Campagnola and L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-1360 (2003).
[CrossRef] [PubMed]

Nat. Cell Biol.

D. Gerlich and J. Ellenberg, "4D imaging to assay complex dynamics in live specimens," Nat. Cell Biol. 5, S14-S19 (2003).

Nature

D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

E. B. Brauns, M. L. Madaras, R. S. Coleman, C. J. Murphy, and M. A. Berg, "Complex local dynamics in DNA on the picosecond and nanosecond time scales," Phys. Rev. Lett. 88, 158101 (2002).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA

R. Gilmanshin, S. Williams, R. H. Callender, W. H. Woodruff, and R. B. Dyer, "Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin," Proc. Natl. Acad. Sci. USA 94, 3709-3713 (1997).
[CrossRef] [PubMed]

Other

R. W. Boyd, Nonlinear Optics (Academic, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Color online) Principle of harmonic holography. An intense pump laser pulse of frequency ω is sent to a group of SHG tagging nanocrystals that scatter both ω and 2ω signals. The bandpass filter rejects the scatterings and the pump pulse at ω while passing signals at 2ω. An independently frequency-doubled reference interferes with the 2ω signals at the CCD camera and forms a hologram. Structures that are not capable of generating second harmonic signals only scatter at ω and will not be recorded on the hologram.

Fig. 2
Fig. 2

(Color online) Experimental setup for harmonic holography. Femtosecond laser pulses of 2 mJ energy and 150 fs pulse width FWHM is split into a pump and a reference beam at BS1. After a variable delay line, the pump carrying the major portion of the energy is shrunk by 3:1 with a reverse telescope (L3, L4) for higher intensity and sent to the sample containing SHG nanocrystal clusters. The second harmonic signals scattered from the nanocrystal clusters are collected by the aspheric objective and steered to the CCD camera. The reference, frequency doubled through a BBO crystal, interferes with the signal at the CCD plane and forms a hologram. BS1, BS2, beam splitters; L1, L2, lenses; ASP OBJ, aspheric objective; M1–M8, mirrors; F1–F4, filters; S, sample.

Fig. 3
Fig. 3

SEM image of the BaTiO 3 nanocrystal cluster sample. The clusters are obtained by sintering 100   nm cubic phase BaTiO 3 nanocrystals at 1000 ° C for one hour and rapidly cooling the nanocrystals in deionized water. The sintering converts the crystal structure from cubic phase to tetragonal phase while forming clusters with large size variations.

Fig. 4
Fig. 4

Second harmonic on-focus image of the nanocrystal clusters obtained directly from the CCD at an integration of 100 laser pulses. The objects are numbered for ease of discussion.

Fig. 5
Fig. 5

Comparison between direct imaging and holographic reconstruction. (a), (c), (e) Direct imaging of 1, 5, and 10 pulses, respectively. (b), (d), (f) Holographic reconstruction of 1, 5, and 10 pulses, respectively. The effect of aberration compensation is clear. For consistent visualization, all images are histogram stretched so that the darkest 0.01% pixels are black and the brightest 0.01% pixels are white. The scale bar is 50 μ m .

Fig. 6
Fig. 6

Magnified images of object 7. (a), (b), (c) Direct imaging of 1, 5, and 10 pulses, respectively. (d), (e), (f) Holographic reconstruction of 1, 5, and 10 pulses, respectively. The scale bar is 5 μ m .

Fig. 7
Fig. 7

(Color online) Normalized axial intensity profile of the holographic reconstruction. The profile is obtained by averaging the normalized image intensity as a function of the z coordinate over 50 randomly picked bright pixels at local maxima in Fig. 5(f). The inset shows a typical profile of an individual image. The solid dots are experimental data, and the lines are a visual guide. On average, the depth-of-focus of the reconstructed images is approximately 4.5 μ m . The depth-of-focus of an individual, small object is roughly 2.5 μ m . The slightly broadened mean profile is due to the size of the nanocrystal clusters.

Fig. 8
Fig. 8

(Color online) SNR characteristics of direct and reconstructed holographic images. (a) SNR of direct (down triangles) and holographic (up triangles) images. The empty triangles represent the measurement data points, solid triangles with lines show the mean values of the measurement, and the dashed lines are theoretical predictions from Eqs. (3) and (4). (b) Gain of SNR by holography over direct imaging. Empty circles are measurement data points, solid circles with line are the mean value, and the dashed line is the theoretical gain calculated from Eq. (5).

Tables (1)

Tables Icon

Table 1 SNR of the Identified Objects a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P ( ω ) = χ ( 1 ) · E ( ω ) + χ ( 2 ) · E ( ω ) · E ( ω ) + χ ( 3 ) · E ( ω ) · E ( ω ) · E ( ω ) + ,
Γ ( ξ , η , ζ ) = h ( x , y ) g ( x , y ; ζ ) ,
S N R ( D ) = I i ( D ) · Δ I i ( D ) · Δ + ( N ( D ) · Δ ) 2 ,
S N R ( H ) = I i ( H ) · Δ .
G S N R = S N R ( H ) S N R ( D ) = γ ( 1 + N ( D ) · Δ I i ( D ) ) .

Metrics