Abstract

We present two approaches that use the environmental conditions in order to exceed the classical Abbe's limit of resolution of an aperture-limited imaging system. At first we use water drops in order to improve the resolving capabilities of an imaging system using a time-multiplexing approach. The limit for the resolution improvement capabilities is equal to the size of the rain drops. The rain drops falling close to the imaged object act as a sparse and random high-resolution mask attached to it. By applying proper image processing, the center of each falling drop is located, and the parameters of the encoding grating are extracted from the captured set of images. The decoding is done digitally by applying the same mask and time averaging. In many cases urban environment includes periodic or other high-resolution objects such as fences. Actually urban environment includes many objects of this type since from an engineering point of view they are considered appealing. Those objects follow well known standards, and therefore their structure can be a priori known even without being fully capable of imaging them. We show experimentally how we use such objects in order to superresolve the contour of moving targets passing in front of them.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Contour superresolved imaging of static ground targets using satellite platform

Asaf Ilovitsh, Shlomo Zach, and Zeev Zalevsky
Appl. Opt. 51(24) 5863-5868 (2012)

Passive time-multiplexing super-resolved technique for axially moving targets

Zeev Zalevsky, Simone Gaffling, Jana Hutter, Lizhuo Chen, Wolfgang Iff, Alexander Tobisch, Javier Garcia, and Vicente Mico
Appl. Opt. 52(7) C11-C15 (2013)

Random angular coding for superresolved imaging

David Sylman, Vicente Micó, Javier García, and Zeev Zalevsky
Appl. Opt. 49(26) 4874-4882 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription