Abstract

Measurements of optical transmission and several thermal properties of Hg1xCdxTe alloys are reported for a few values of the alloy composition parameter x, which was determined by a microprobe technique. The values of the thermal diffusivity, specific heat, and thermal conductivity were measured using the laser-flash method. These results are reported at four discrete temperatures between 90 and 400  K and compared to those of three well-characterized semiconductor materials: Si, InAs, and InSb.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. Maleki and L. R. Holland, "Thermal properties of HgCdTe," in Properties of Narrow Gap Cadmium-Based Compounds, P. Capper, ed. (INSPEC, 1994), pp. 48-54.
  2. G. L. Hansen, J. L. Schmit, and T. N. Casselman, "Energy gap versus alloy composition and temperature in Hg1−xCdxTe," J. Appl. Phys. 53, 7099-7101 (1982).
    [CrossRef]
  3. See, for example, J. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, L. C. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. (Springer, 2003).
  4. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, "Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity," J. Appl. Phys. 32, 1679-1684 (1961).
    [CrossRef]
  5. R. D. Cowan, "Pulse method of measuring thermal diffusivity at high temperatures," J. Appl. Phys. 34, 926-927 (1963).
    [CrossRef]
  6. L. M. Clark III and R. E. Taylor, "Radiation loss in the flash method for thermal diffusivity," J. Appl. Phys. 46, 714-719 (1975).
    [CrossRef]
  7. H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann, and O. Hahn, "Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model," Int. J. Thermophys. 19, 941-949 (1998).
    [CrossRef]
  8. R. C. Campbell and S. E. Smith, "Flash diffusivity method: a survey of capabilities," Electron. Cooling 8, 34-40 (2002).
  9. Test Method E1461-0, "Standard test method for thermal diffusivity by the flash method," in Annual Book of ASTM Standards 14.02 (American Society for Testing Materials, 2001), pp. 1-13.
    [PubMed]
  10. Netzsch Instruments, Inc., Burlingon, Mass. 01803, "Thermal diffusivity, specific heat and thermal conductivity of semiconductors," Report 621001116 (Netzsch Instruments, 2007).
  11. V. V. Kosarev, P. V. Tamarin, and S. S. Shalyt, "Thermal conductivity of indium antimonide at low temperatures," Phys. Status Solidi B 44, 525-534 (1971).
    [CrossRef]
  12. G. Busch and E. F. Steigmeier, "Wärmeleitfähigkeit, elektrische Leitfähigkeit, Hall-Effekt und Thermospannung von InSb," Helv. Phys. Acta. 34, 1-28 (1961).
  13. M. G. Holland, "Phonon scattering in semiconductors from thermal conductivity studies," Phys. Rev. 134, A471-A480 (1964).
    [CrossRef]
  14. P. V. Tamarin and S. S. Shalyt, "Thermal conductivity and thermoelectric power of indium arsenide at low temperatures," Sov. Phys. Semicond. 5, 1097-1098 (1971).
  15. E. F. Steigmeier and I. Kudman, "Thermal conductivity of III-V compounds at high temperatures," Phys. Rev. 132, 508-512 (1963).
    [CrossRef]
  16. R. Bowers, R. W. Ure, Jr., J. E. Bauerle, and A. J. Cornish, "InAs and InSb as thermoelectric materials," J. Appl. Phys. 30, 930-934 (1959).
    [CrossRef]
  17. B. G. Streetman, Solid State Electronic Devices, 3rd ed. (Prentice Hall, 1990).
  18. C. J. Glassbrenner and G. A. Slack, "Thermal conductivity of silicon and germanium from 3K to the melting point," Phys. Rev. 134, A1058-A1069 (1964).
    [CrossRef]
  19. R. G. Morris and J. G. Hust, "Thermal conductivity measurements of silicon from 30° to 425 °C," Phys. Rev. 124, 1426-1430 (1961).
    [CrossRef]
  20. H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, "Thermal conductivity of silicon from 300 to 1400 K," Phys. Rev. 130, 1743-1748 (1963).
    [CrossRef]
  21. D. Long and J. L. Schmit, "Mercury-cadmium telluride and closely related alloys," in Semiconductors and Semimetals, R. K. Willardson and A. C. Beer, eds. (Academic, 1970), Vol. 5, pp. 175-255.
  22. T. C. Harris, "Properties of Hg-chalcogenides," in Physics & Chemistry of II-VI Compounds, M. Aven and J. S. Prener, eds. (North-Holland, 1957).
  23. P. Klocek, Handbook of Infrared Optical Materials (Dekker, 1991).
  24. J. Zhao, X. Li, H. Liu, R. Jiang, Z. Liu, Z. Hu, H. Gong, and J. Fang, "Damage threshold of HgCdTe induced by continuous-wave CO2 laser," Appl. Phys. Lett. 74, 1081-1083 (1998).
    [CrossRef]
  25. A. Garg, A. Kapoor, K. N. Tripathi, and S. K. Bansal, "Laser induced damage studies in mercury cadmium telluride," Opt. Laser Technol. 39, 1319-1327 (2007).
    [CrossRef]

2007 (1)

A. Garg, A. Kapoor, K. N. Tripathi, and S. K. Bansal, "Laser induced damage studies in mercury cadmium telluride," Opt. Laser Technol. 39, 1319-1327 (2007).
[CrossRef]

2002 (1)

R. C. Campbell and S. E. Smith, "Flash diffusivity method: a survey of capabilities," Electron. Cooling 8, 34-40 (2002).

1998 (2)

H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann, and O. Hahn, "Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model," Int. J. Thermophys. 19, 941-949 (1998).
[CrossRef]

J. Zhao, X. Li, H. Liu, R. Jiang, Z. Liu, Z. Hu, H. Gong, and J. Fang, "Damage threshold of HgCdTe induced by continuous-wave CO2 laser," Appl. Phys. Lett. 74, 1081-1083 (1998).
[CrossRef]

1982 (1)

G. L. Hansen, J. L. Schmit, and T. N. Casselman, "Energy gap versus alloy composition and temperature in Hg1−xCdxTe," J. Appl. Phys. 53, 7099-7101 (1982).
[CrossRef]

1975 (1)

L. M. Clark III and R. E. Taylor, "Radiation loss in the flash method for thermal diffusivity," J. Appl. Phys. 46, 714-719 (1975).
[CrossRef]

1971 (2)

V. V. Kosarev, P. V. Tamarin, and S. S. Shalyt, "Thermal conductivity of indium antimonide at low temperatures," Phys. Status Solidi B 44, 525-534 (1971).
[CrossRef]

P. V. Tamarin and S. S. Shalyt, "Thermal conductivity and thermoelectric power of indium arsenide at low temperatures," Sov. Phys. Semicond. 5, 1097-1098 (1971).

1964 (2)

C. J. Glassbrenner and G. A. Slack, "Thermal conductivity of silicon and germanium from 3K to the melting point," Phys. Rev. 134, A1058-A1069 (1964).
[CrossRef]

M. G. Holland, "Phonon scattering in semiconductors from thermal conductivity studies," Phys. Rev. 134, A471-A480 (1964).
[CrossRef]

1963 (3)

R. D. Cowan, "Pulse method of measuring thermal diffusivity at high temperatures," J. Appl. Phys. 34, 926-927 (1963).
[CrossRef]

E. F. Steigmeier and I. Kudman, "Thermal conductivity of III-V compounds at high temperatures," Phys. Rev. 132, 508-512 (1963).
[CrossRef]

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, "Thermal conductivity of silicon from 300 to 1400 K," Phys. Rev. 130, 1743-1748 (1963).
[CrossRef]

1961 (3)

R. G. Morris and J. G. Hust, "Thermal conductivity measurements of silicon from 30° to 425 °C," Phys. Rev. 124, 1426-1430 (1961).
[CrossRef]

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, "Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity," J. Appl. Phys. 32, 1679-1684 (1961).
[CrossRef]

G. Busch and E. F. Steigmeier, "Wärmeleitfähigkeit, elektrische Leitfähigkeit, Hall-Effekt und Thermospannung von InSb," Helv. Phys. Acta. 34, 1-28 (1961).

1959 (1)

R. Bowers, R. W. Ure, Jr., J. E. Bauerle, and A. J. Cornish, "InAs and InSb as thermoelectric materials," J. Appl. Phys. 30, 930-934 (1959).
[CrossRef]

Appl. Phys. Lett. (1)

J. Zhao, X. Li, H. Liu, R. Jiang, Z. Liu, Z. Hu, H. Gong, and J. Fang, "Damage threshold of HgCdTe induced by continuous-wave CO2 laser," Appl. Phys. Lett. 74, 1081-1083 (1998).
[CrossRef]

Electron. Cooling (1)

R. C. Campbell and S. E. Smith, "Flash diffusivity method: a survey of capabilities," Electron. Cooling 8, 34-40 (2002).

Helv. Phys. Acta. (1)

G. Busch and E. F. Steigmeier, "Wärmeleitfähigkeit, elektrische Leitfähigkeit, Hall-Effekt und Thermospannung von InSb," Helv. Phys. Acta. 34, 1-28 (1961).

Int. J. Thermophys. (1)

H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann, and O. Hahn, "Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model," Int. J. Thermophys. 19, 941-949 (1998).
[CrossRef]

J. Appl. Phys. (5)

G. L. Hansen, J. L. Schmit, and T. N. Casselman, "Energy gap versus alloy composition and temperature in Hg1−xCdxTe," J. Appl. Phys. 53, 7099-7101 (1982).
[CrossRef]

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, "Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity," J. Appl. Phys. 32, 1679-1684 (1961).
[CrossRef]

R. D. Cowan, "Pulse method of measuring thermal diffusivity at high temperatures," J. Appl. Phys. 34, 926-927 (1963).
[CrossRef]

L. M. Clark III and R. E. Taylor, "Radiation loss in the flash method for thermal diffusivity," J. Appl. Phys. 46, 714-719 (1975).
[CrossRef]

R. Bowers, R. W. Ure, Jr., J. E. Bauerle, and A. J. Cornish, "InAs and InSb as thermoelectric materials," J. Appl. Phys. 30, 930-934 (1959).
[CrossRef]

Opt. Laser Technol. (1)

A. Garg, A. Kapoor, K. N. Tripathi, and S. K. Bansal, "Laser induced damage studies in mercury cadmium telluride," Opt. Laser Technol. 39, 1319-1327 (2007).
[CrossRef]

Phys. Rev. (5)

M. G. Holland, "Phonon scattering in semiconductors from thermal conductivity studies," Phys. Rev. 134, A471-A480 (1964).
[CrossRef]

E. F. Steigmeier and I. Kudman, "Thermal conductivity of III-V compounds at high temperatures," Phys. Rev. 132, 508-512 (1963).
[CrossRef]

C. J. Glassbrenner and G. A. Slack, "Thermal conductivity of silicon and germanium from 3K to the melting point," Phys. Rev. 134, A1058-A1069 (1964).
[CrossRef]

R. G. Morris and J. G. Hust, "Thermal conductivity measurements of silicon from 30° to 425 °C," Phys. Rev. 124, 1426-1430 (1961).
[CrossRef]

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, "Thermal conductivity of silicon from 300 to 1400 K," Phys. Rev. 130, 1743-1748 (1963).
[CrossRef]

Phys. Status Solidi B (1)

V. V. Kosarev, P. V. Tamarin, and S. S. Shalyt, "Thermal conductivity of indium antimonide at low temperatures," Phys. Status Solidi B 44, 525-534 (1971).
[CrossRef]

Sov. Phys. Semicond. (1)

P. V. Tamarin and S. S. Shalyt, "Thermal conductivity and thermoelectric power of indium arsenide at low temperatures," Sov. Phys. Semicond. 5, 1097-1098 (1971).

Other (8)

D. Long and J. L. Schmit, "Mercury-cadmium telluride and closely related alloys," in Semiconductors and Semimetals, R. K. Willardson and A. C. Beer, eds. (Academic, 1970), Vol. 5, pp. 175-255.

T. C. Harris, "Properties of Hg-chalcogenides," in Physics & Chemistry of II-VI Compounds, M. Aven and J. S. Prener, eds. (North-Holland, 1957).

P. Klocek, Handbook of Infrared Optical Materials (Dekker, 1991).

See, for example, J. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, L. C. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. (Springer, 2003).

H. Maleki and L. R. Holland, "Thermal properties of HgCdTe," in Properties of Narrow Gap Cadmium-Based Compounds, P. Capper, ed. (INSPEC, 1994), pp. 48-54.

Test Method E1461-0, "Standard test method for thermal diffusivity by the flash method," in Annual Book of ASTM Standards 14.02 (American Society for Testing Materials, 2001), pp. 1-13.
[PubMed]

Netzsch Instruments, Inc., Burlingon, Mass. 01803, "Thermal diffusivity, specific heat and thermal conductivity of semiconductors," Report 621001116 (Netzsch Instruments, 2007).

B. G. Streetman, Solid State Electronic Devices, 3rd ed. (Prentice Hall, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Transmission spectra for uncoated, bulk InAs, InSb, and Si at 300 and 77   K .

Fig. 2
Fig. 2

Transmission spectra for Hg 1 x Cd x Te at 300 and 77   K .

Fig. 3
Fig. 3

Measured values of the thermal conductivity of InSb and InAs in the temperature range from 90 to 400   K : solid and dashed curves are fits of the data, respectively, to Eq. (4).

Fig. 4
Fig. 4

Measured values of the thermal conductivity of Hg 1 x Cd x Te with x = 0.41 and x = 0.29 in the temperature range from 90 to 400   K : solid and dashed curves are fits of the data, respectively, to Eq. (4).

Tables (3)

Tables Icon

Table 1 Calculated and Measured Alloy Compositions of Hg1−xCdxTe at 300 K a

Tables Icon

Table 2 Summary of Thermal Properties for InSb, InAs, Si, and Hg1− x Cd x Te a

Tables Icon

Table 3 Fitting Parameters for Thermal Conductivity Data from Eq. (4)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E g ( x , T ) = 0.302 + 1.93 x + 5.35 × 10 4 T ( 1 2 x ) 0.810 x 2 + 0.832 x 3 ,
K = 0.1388 a 2 t 50 ,
k = K C p ρ .
k ( T ) = A + B T ,

Metrics