Abstract

A temperature-insensitive optical fiber tilt sensor is presented. The sensor scheme uses a prestrained fiber Bragg grating to sense the strain, which depends on the tilt angle. To compensate for the temperature effect, materials that have different linear thermal expansion behaviors are used for implementation of the sensor body. The differentiation in the linear thermal expansion would then cause a counter effect to the original temperature effect. Experimental tests show an accuracy of ±0.167° in tilt angle measurement. A temperature stability better than ±0.33° over the temperature range from 27°C to 75°C is demonstrated. The resolution 0.0067° in tilt angle measurement is achieved by using our preliminary sensor with a dimension of 16×5×5cm3.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. Olaru and C. Cotae, "Tilt sensor with magnetic liquid," Sens. Actuators A 59, 133-135 (1997).
    [CrossRef]
  2. "Contactless inclinometer," http://www.sensorsystems.it/products.htm.
  3. "Liquid capacitive gravity based inclinometer," http://www.riekerinc.com/Inclinometer.htm.
  4. D. Inaudi and B. Glisic, "Development of a fiber-optic interferometric inclinometer," Proc. SPIE 4694, 36-42 (2002).
    [CrossRef]
  5. W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, "Simultaneous measurement of strain and temperature: error analysis," Opt. Eng. 36, 598-609 (1997).
    [CrossRef]
  6. S. W. James, M. L. Dockney, and R. P. Tatam, "Simultaneous independent temperature and strain measurement using in-fiber Bragg grating sensors," Electron. Lett. 32, 1133-1134 (1996).
    [CrossRef]
  7. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
    [CrossRef]
  8. M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, "Optical in-fiber grating high pressure sensor," Electron. Lett. 29, 398-399 (1993).
    [CrossRef]
  9. W. Zhang, X. Dong, Q. Zhao, G. Kai, and S. Yuan, "FBG-type sensor for simultaneous measurement of force (or displacement) and temperature based on bilateral cantilever beam," IEEE Photon. Technol. Lett. 13, 1340-1342 (2001).
    [CrossRef]
  10. T. A. Berkoff and A. D. Kersey, "Experimental demonstration of a fiber Bragg grating accelerometer," IEEE Photon. Technol. Lett. 8, 1677-1679 (1996).
    [CrossRef]
  11. B.-O. Guan, H.-Y. Tam, and S.-Y. Liu, "Temperature-independent fiber Bragg grating tilt sensor," IEEE Photon. Technol. Lett. 16, 224-226 (2004).
    [CrossRef]
  12. X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, "Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 2394-2396 (2005).
    [CrossRef]
  13. B. Peng, Y. Zhao, Y. Zhao, and J. Yang, "Tilt sensor with FBG technology and matched FBG demodulating method," IEEE Sensors J. 6, 63-66 (2006).
    [CrossRef]
  14. Y. Zhang, D. Feng, Z. Liu, Z. Guo, X. Dong, K. S. Chiang, and B. C. B. Chu, "High-sensitivity pressure sensor using a shielded polymer-coated fiber Bragg grating," IEEE Photon. Technol. Lett. 13, 618-619 (2001).
    [CrossRef]

2006 (1)

B. Peng, Y. Zhao, Y. Zhao, and J. Yang, "Tilt sensor with FBG technology and matched FBG demodulating method," IEEE Sensors J. 6, 63-66 (2006).
[CrossRef]

2005 (1)

X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, "Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 2394-2396 (2005).
[CrossRef]

2004 (1)

B.-O. Guan, H.-Y. Tam, and S.-Y. Liu, "Temperature-independent fiber Bragg grating tilt sensor," IEEE Photon. Technol. Lett. 16, 224-226 (2004).
[CrossRef]

2002 (1)

D. Inaudi and B. Glisic, "Development of a fiber-optic interferometric inclinometer," Proc. SPIE 4694, 36-42 (2002).
[CrossRef]

2001 (2)

W. Zhang, X. Dong, Q. Zhao, G. Kai, and S. Yuan, "FBG-type sensor for simultaneous measurement of force (or displacement) and temperature based on bilateral cantilever beam," IEEE Photon. Technol. Lett. 13, 1340-1342 (2001).
[CrossRef]

Y. Zhang, D. Feng, Z. Liu, Z. Guo, X. Dong, K. S. Chiang, and B. C. B. Chu, "High-sensitivity pressure sensor using a shielded polymer-coated fiber Bragg grating," IEEE Photon. Technol. Lett. 13, 618-619 (2001).
[CrossRef]

1997 (3)

R. Olaru and C. Cotae, "Tilt sensor with magnetic liquid," Sens. Actuators A 59, 133-135 (1997).
[CrossRef]

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, "Simultaneous measurement of strain and temperature: error analysis," Opt. Eng. 36, 598-609 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

1996 (2)

S. W. James, M. L. Dockney, and R. P. Tatam, "Simultaneous independent temperature and strain measurement using in-fiber Bragg grating sensors," Electron. Lett. 32, 1133-1134 (1996).
[CrossRef]

T. A. Berkoff and A. D. Kersey, "Experimental demonstration of a fiber Bragg grating accelerometer," IEEE Photon. Technol. Lett. 8, 1677-1679 (1996).
[CrossRef]

1993 (1)

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, "Optical in-fiber grating high pressure sensor," Electron. Lett. 29, 398-399 (1993).
[CrossRef]

Electron. Lett. (2)

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, "Optical in-fiber grating high pressure sensor," Electron. Lett. 29, 398-399 (1993).
[CrossRef]

S. W. James, M. L. Dockney, and R. P. Tatam, "Simultaneous independent temperature and strain measurement using in-fiber Bragg grating sensors," Electron. Lett. 32, 1133-1134 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

Y. Zhang, D. Feng, Z. Liu, Z. Guo, X. Dong, K. S. Chiang, and B. C. B. Chu, "High-sensitivity pressure sensor using a shielded polymer-coated fiber Bragg grating," IEEE Photon. Technol. Lett. 13, 618-619 (2001).
[CrossRef]

W. Zhang, X. Dong, Q. Zhao, G. Kai, and S. Yuan, "FBG-type sensor for simultaneous measurement of force (or displacement) and temperature based on bilateral cantilever beam," IEEE Photon. Technol. Lett. 13, 1340-1342 (2001).
[CrossRef]

T. A. Berkoff and A. D. Kersey, "Experimental demonstration of a fiber Bragg grating accelerometer," IEEE Photon. Technol. Lett. 8, 1677-1679 (1996).
[CrossRef]

B.-O. Guan, H.-Y. Tam, and S.-Y. Liu, "Temperature-independent fiber Bragg grating tilt sensor," IEEE Photon. Technol. Lett. 16, 224-226 (2004).
[CrossRef]

X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, "Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 2394-2396 (2005).
[CrossRef]

IEEE Sensors J. (1)

B. Peng, Y. Zhao, Y. Zhao, and J. Yang, "Tilt sensor with FBG technology and matched FBG demodulating method," IEEE Sensors J. 6, 63-66 (2006).
[CrossRef]

J. Lightwave Technol. (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Opt. Eng. (1)

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, "Simultaneous measurement of strain and temperature: error analysis," Opt. Eng. 36, 598-609 (1997).
[CrossRef]

Proc. SPIE (1)

D. Inaudi and B. Glisic, "Development of a fiber-optic interferometric inclinometer," Proc. SPIE 4694, 36-42 (2002).
[CrossRef]

Sens. Actuators A (1)

R. Olaru and C. Cotae, "Tilt sensor with magnetic liquid," Sens. Actuators A 59, 133-135 (1997).
[CrossRef]

Other (2)

"Contactless inclinometer," http://www.sensorsystems.it/products.htm.

"Liquid capacitive gravity based inclinometer," http://www.riekerinc.com/Inclinometer.htm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) Proposed tilt sensor with an FBG contained in an aluminum box.

Fig. 2
Fig. 2

(Color online) Proposed sensor scheme with length marked. Here the PVC cylinder goes through a hole made at the end-face wall of the aluminum box, and is fixed onto the wall with screws on both sides of the PVC cylinder. The length, L1, can be adjusted by using this mechanism.

Fig. 3
Fig. 3

Bragg wavelength versus | θ | for θ > 0 and θ < 0 . In the case of θ > 0 , the (A) end of the aluminum box is raised, while the case of θ < 0 corresponds to raising the (B) end of the aluminum box.

Fig. 4
Fig. 4

Bragg wavelength versus temperature for θ = 0 .

Fig. 5
Fig. 5

Bragg wavelength versus temperature for θ = 5 ° (—◆—), θ = 5 ° (—■—), θ = 10 ° (—▲—) and θ = 10 ° (—x—).

Fig. 6
Fig. 6

Measured Bragg wavelengths for θ = 0 ° , 5 ° , and 10° (see the circles) at the temperature of 55 ° C .

Tables (1)

Tables Icon

Table 1 Relative Performance of Current Tilt Angle Measurement Systems

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = ( 1 P e ) λ B A E M ( sin θ μ cos θ ) ,
Δ λ = ( 1 P e ) λ B A E [ M ( sin θ ) ] θ   for   small   angle.
( L 1 × α 1 + L 3 × α 3 L t × α t ) 0.0012 × 10 3 / L 2 = 0.01 × 10 9 .
λ = λ 0 + δ λ = K Δ T + 0.06 ( θ 0 + δ θ ) ,
δ θ = ( δ λ K Δ T ) / 0.06 .
| δ θ | max = ( | δ λ | max + | K Δ T | max ) / 0.06 .

Metrics