Abstract

A refractive index sensor based on the thinned and microstructure fiber Bragg grating (ThMs-FBG) was proposed and realized as a chemical sensing. The numerical simulation for the reflectance spectrum of the ThMs-FBG was calculated and the phase shift down-peak could be observed from the reflectance spectrum. Many factors influencing the reflectance spectrum were considered in detail for simulation, including the etched depth, length, and position. The sandwich-solution etching method was utilized to realize the microstructure of the ThMs-FBG, and the photographs of the microstructure were obtained. Experimental results demonstrated that the reflectance spectrum, phase shift down-peak wavelength, and reflected optical intensity of the ThMs-FBG all depended on the surrounding refractive index. However, only the down-peak wavelength of the ThMs-FBG changed with the surrounding temperature. Under the condition that the length and cladding diameter of the ThMs-FBG microstructure were 800 and 14μm, respectively, and the position of the microstructure of the ThMs-FBG is in the middle of grating region, the refractive index sensitivity of the ThMs-FBG was 0.79  nm∕refractive index unit with the wide range of 1.33–1.457 and a high resolution of 1.2×103. The temperature sensitivity was 0.0103nm/°C, which was approximately equal to that of common FBG.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. Matsubara, S. Kawata, and S. Minami, "Optical chemical sensor based on surface plasma measurement," Appl. Opt. 27, 1160-1163 (1998).
    [CrossRef]
  2. G. Matteo, M. Franco, and G. Giorgio, "Direct measurement of refractive-index dispersion of transparent media by white-light interferometry," Appl. Opt. 42, 3910-3914 (2003).
    [CrossRef]
  3. J. Raty and K.-E. Peiponen, "Measurement of refractive index of liquids using s- and p-polarized light," Meas. Sci. Technol. 11, 74-76 (2000).
    [CrossRef]
  4. B. Argha, M. Sayak, and K. V. Rishi, "Fiber optic sensing of liquid refractive index," Sens. Actuators B 123, 594-605 (2007).
    [CrossRef]
  5. C. B. Kim and C. B. Su, "Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fibre optic Fresnel ratio meter," Meas. Sci. Technol. 15, 1683-1686 (2004).
    [CrossRef]
  6. R. Slavik and J. Ctyroky, "Miniturization of fiber optical surface plasmon resonance sensor," Sens. Actuators B 51, 311-315 (1998).
    [CrossRef]
  7. A. Cusano, A. Cutolo, M. Giordano, and L. Nicolais, "Optoelectronic refractive index measurements: applications to smart processing," IEEE Sens. J. 3, 781-787 (2003).
    [CrossRef]
  8. R. Bernini, S. Campopiano, and L. Zeni, "Silicon micromachined hollow optical waveguides for sensing applications," IEEE J. Sel. Top. Quantum Electron. 8, 106-110 (2002).
    [CrossRef]
  9. R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, "ARROW optical waveguides based sensors," Sens. Actuators B 100, 143-146 (2004).
    [CrossRef]
  10. D. Yin, H. Schmidt, J. P. Barber, and A. R. Hawkins, "Integrated ARROW waveguides with hollow cores," Opt. Express 12, 2710-2715 (2004).
    [CrossRef] [PubMed]
  11. J. Villatoro, D. Monzón-Hernández, and D. Talavera, "High resolution refractive index sensing with cladded multimode tapered optical fibre," Electron. Lett. 40, 106-107 (2004).
    [CrossRef]
  12. S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
    [CrossRef]
  13. T. Allsopa, F. Floreania, and K. P. Jedrzejewskib, "Tapered fibre LPG device as a sensing element for refractive index," Proc. SPIE 5855, 443-446 (2005).
    [CrossRef]
  14. X. W. Shu, B. A. L. Gwandu, and Y. Liu, "Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement," Opt. Lett. 26, 774-776 (2001).
    [CrossRef]
  15. G. Laffont and P. Ferdinand, "Tilted short-period fibre-Bragg-grating induced coupling to cladding modes for accurate refractometry," Meas. Sci. Technol. 12, 765-770 (2001).
    [CrossRef]
  16. C. L. Zhao, X. F. Yang, M. S. Demokan, and W. Jin, "Simultaneous temperature and refractive index measurements using a 3° slanted multimode fiber Bragg grating," J. Lightwave Technol. 24, 879-883 (2006).
    [CrossRef]
  17. K. Zhou, X. Chen, L. Zhang, and I. Bennion, "High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings," Electron. Lett. 40, 232-234 (2004).
    [CrossRef]
  18. A. Iadicicco, S. Campopiano, and A. Cutolo, "Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings," Sens. Actuators B 120, 231-237 (2006).
    [CrossRef]
  19. W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
  20. A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, "Thinned fiber Bragg gratings as refractive index sensors," IEEE Sens. J. 5, 1288-1295 (2005).
    [CrossRef]
  21. N. Chen, B. F. Yun, and Y. P. Cui, "Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing," Appl. Phys. Lett. 88, 133902 (2006).
  22. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, "Refractive index sensor based on microstructured fiber Bragg grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
    [CrossRef]
  23. A. Iadicicco, A. Cutolo, S. Campopiano, M. Giordano, and A. Cusano, "Advanced fiber optical refractometers based on partially etched fiber Bragg gratings," Proc. IEEE Sens. 3, 1218-1221 (2004).
    [CrossRef]
  24. A. Cusano, A. Iadicicco, S. Campopiano, M. Giordano, and A. Cutolo, "Thinned and micro-structured fibre Bragg gratings: towards new all-fibre high-sensitivity chemical sensors," Appl. Opt. 7, 734-741 (2005).
  25. P. Domachuk, I. C. M. Litter, M. Cronin-Golomb, and B. J. Eggleton, "Compact resonant integrated microfluidic refractometer,"Appl. Phys. Lett. 88, 093513 (2006).
    [CrossRef]
  26. T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  27. M. Monerie, "Propagation in doubly clad single-mode fibers," IEEE Trans. Microwave Theory Tech. 82, 381-388 (1982).
    [CrossRef]

2007 (1)

B. Argha, M. Sayak, and K. V. Rishi, "Fiber optic sensing of liquid refractive index," Sens. Actuators B 123, 594-605 (2007).
[CrossRef]

2006 (4)

C. L. Zhao, X. F. Yang, M. S. Demokan, and W. Jin, "Simultaneous temperature and refractive index measurements using a 3° slanted multimode fiber Bragg grating," J. Lightwave Technol. 24, 879-883 (2006).
[CrossRef]

A. Iadicicco, S. Campopiano, and A. Cutolo, "Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings," Sens. Actuators B 120, 231-237 (2006).
[CrossRef]

N. Chen, B. F. Yun, and Y. P. Cui, "Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing," Appl. Phys. Lett. 88, 133902 (2006).

P. Domachuk, I. C. M. Litter, M. Cronin-Golomb, and B. J. Eggleton, "Compact resonant integrated microfluidic refractometer,"Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

2005 (5)

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, "Refractive index sensor based on microstructured fiber Bragg grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
[CrossRef]

A. Cusano, A. Iadicicco, S. Campopiano, M. Giordano, and A. Cutolo, "Thinned and micro-structured fibre Bragg gratings: towards new all-fibre high-sensitivity chemical sensors," Appl. Opt. 7, 734-741 (2005).

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, "Thinned fiber Bragg gratings as refractive index sensors," IEEE Sens. J. 5, 1288-1295 (2005).
[CrossRef]

T. Allsopa, F. Floreania, and K. P. Jedrzejewskib, "Tapered fibre LPG device as a sensing element for refractive index," Proc. SPIE 5855, 443-446 (2005).
[CrossRef]

2004 (6)

K. Zhou, X. Chen, L. Zhang, and I. Bennion, "High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings," Electron. Lett. 40, 232-234 (2004).
[CrossRef]

C. B. Kim and C. B. Su, "Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fibre optic Fresnel ratio meter," Meas. Sci. Technol. 15, 1683-1686 (2004).
[CrossRef]

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, "ARROW optical waveguides based sensors," Sens. Actuators B 100, 143-146 (2004).
[CrossRef]

D. Yin, H. Schmidt, J. P. Barber, and A. R. Hawkins, "Integrated ARROW waveguides with hollow cores," Opt. Express 12, 2710-2715 (2004).
[CrossRef] [PubMed]

J. Villatoro, D. Monzón-Hernández, and D. Talavera, "High resolution refractive index sensing with cladded multimode tapered optical fibre," Electron. Lett. 40, 106-107 (2004).
[CrossRef]

A. Iadicicco, A. Cutolo, S. Campopiano, M. Giordano, and A. Cusano, "Advanced fiber optical refractometers based on partially etched fiber Bragg gratings," Proc. IEEE Sens. 3, 1218-1221 (2004).
[CrossRef]

2003 (3)

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

G. Matteo, M. Franco, and G. Giorgio, "Direct measurement of refractive-index dispersion of transparent media by white-light interferometry," Appl. Opt. 42, 3910-3914 (2003).
[CrossRef]

A. Cusano, A. Cutolo, M. Giordano, and L. Nicolais, "Optoelectronic refractive index measurements: applications to smart processing," IEEE Sens. J. 3, 781-787 (2003).
[CrossRef]

2002 (1)

R. Bernini, S. Campopiano, and L. Zeni, "Silicon micromachined hollow optical waveguides for sensing applications," IEEE J. Sel. Top. Quantum Electron. 8, 106-110 (2002).
[CrossRef]

2001 (2)

X. W. Shu, B. A. L. Gwandu, and Y. Liu, "Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement," Opt. Lett. 26, 774-776 (2001).
[CrossRef]

G. Laffont and P. Ferdinand, "Tilted short-period fibre-Bragg-grating induced coupling to cladding modes for accurate refractometry," Meas. Sci. Technol. 12, 765-770 (2001).
[CrossRef]

2000 (1)

J. Raty and K.-E. Peiponen, "Measurement of refractive index of liquids using s- and p-polarized light," Meas. Sci. Technol. 11, 74-76 (2000).
[CrossRef]

1998 (2)

R. Slavik and J. Ctyroky, "Miniturization of fiber optical surface plasmon resonance sensor," Sens. Actuators B 51, 311-315 (1998).
[CrossRef]

K. Matsubara, S. Kawata, and S. Minami, "Optical chemical sensor based on surface plasma measurement," Appl. Opt. 27, 1160-1163 (1998).
[CrossRef]

1997 (1)

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

1982 (1)

M. Monerie, "Propagation in doubly clad single-mode fibers," IEEE Trans. Microwave Theory Tech. 82, 381-388 (1982).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

P. Domachuk, I. C. M. Litter, M. Cronin-Golomb, and B. J. Eggleton, "Compact resonant integrated microfluidic refractometer,"Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

N. Chen, B. F. Yun, and Y. P. Cui, "Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing," Appl. Phys. Lett. 88, 133902 (2006).

Electron. Lett. (2)

J. Villatoro, D. Monzón-Hernández, and D. Talavera, "High resolution refractive index sensing with cladded multimode tapered optical fibre," Electron. Lett. 40, 106-107 (2004).
[CrossRef]

K. Zhou, X. Chen, L. Zhang, and I. Bennion, "High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings," Electron. Lett. 40, 232-234 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Bernini, S. Campopiano, and L. Zeni, "Silicon micromachined hollow optical waveguides for sensing applications," IEEE J. Sel. Top. Quantum Electron. 8, 106-110 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, "Refractive index sensor based on microstructured fiber Bragg grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
[CrossRef]

IEEE Sens. J. (2)

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, "Thinned fiber Bragg gratings as refractive index sensors," IEEE Sens. J. 5, 1288-1295 (2005).
[CrossRef]

A. Cusano, A. Cutolo, M. Giordano, and L. Nicolais, "Optoelectronic refractive index measurements: applications to smart processing," IEEE Sens. J. 3, 781-787 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

M. Monerie, "Propagation in doubly clad single-mode fibers," IEEE Trans. Microwave Theory Tech. 82, 381-388 (1982).
[CrossRef]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (4)

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

G. Laffont and P. Ferdinand, "Tilted short-period fibre-Bragg-grating induced coupling to cladding modes for accurate refractometry," Meas. Sci. Technol. 12, 765-770 (2001).
[CrossRef]

C. B. Kim and C. B. Su, "Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fibre optic Fresnel ratio meter," Meas. Sci. Technol. 15, 1683-1686 (2004).
[CrossRef]

J. Raty and K.-E. Peiponen, "Measurement of refractive index of liquids using s- and p-polarized light," Meas. Sci. Technol. 11, 74-76 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Lett. (1)

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).

Proc. IEEE Sens. (1)

A. Iadicicco, A. Cutolo, S. Campopiano, M. Giordano, and A. Cusano, "Advanced fiber optical refractometers based on partially etched fiber Bragg gratings," Proc. IEEE Sens. 3, 1218-1221 (2004).
[CrossRef]

Proc. SPIE (1)

T. Allsopa, F. Floreania, and K. P. Jedrzejewskib, "Tapered fibre LPG device as a sensing element for refractive index," Proc. SPIE 5855, 443-446 (2005).
[CrossRef]

Sens. Actuators B (4)

A. Iadicicco, S. Campopiano, and A. Cutolo, "Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings," Sens. Actuators B 120, 231-237 (2006).
[CrossRef]

B. Argha, M. Sayak, and K. V. Rishi, "Fiber optic sensing of liquid refractive index," Sens. Actuators B 123, 594-605 (2007).
[CrossRef]

R. Slavik and J. Ctyroky, "Miniturization of fiber optical surface plasmon resonance sensor," Sens. Actuators B 51, 311-315 (1998).
[CrossRef]

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, "ARROW optical waveguides based sensors," Sens. Actuators B 100, 143-146 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the microstructure of the ThMs-FBG. L P 's the distance between the microstructure and the left end of the grating; L FBG 's the whole length of the grating; D FBG 's the cladding diameter; L ThMs 's the etched length; D ThMs 's the remaining cladding diameter etched, and h c 's the height of the frustum of a cone.

Fig. 2
Fig. 2

ERI of the thinned FBG with different cladding diameter (three nonsolid curves) and without the fiber cladding (solid curve) versus SRI.

Fig. 3
Fig. 3

Reflectance spectrum of the ThMs-FBG with different etched position of the microstructure at π phase shift when the etched length is 0.5   mm .

Fig. 4
Fig. 4

Reflectance spectrum of the ThMs-FBG with different etched length of the microstructure at π phase shift at different positions.

Fig. 5
Fig. 5

Experimental setup for the fabrication and characteristics test of the ThMs-FBG.

Fig. 6
Fig. 6

Photographs of the microstructure of the ThMs-FBG.

Fig. 7
Fig. 7

Reflectance spectrum of the ThMs-FBG versus the SRI at the room temperature.

Fig. 8
Fig. 8

Phase shift down-peak wavelength of the ThMs-FBG versus the SRI at room temperature.

Fig. 9
Fig. 9

Reflected optical intensity of the ThMs-FBG versus the SRI at room temperature.

Fig. 10
Fig. 10

Reflectance spectrum of the ThMs-FBG versus the surrounding temperature in the water.

Fig. 11
Fig. 11

Phase shift down-peak wavelength of the ThMs-FBG versus the surrounding temperature in the water.

Fig. 12
Fig. 12

Reflected optical intensity of the ThMs-FBG versus the surrounding temperature in the water.

Tables (2)

Tables Icon

Table 1 Dimensions of the Microstructure of the ThMs-FBG

Tables Icon

Table 2 Statistical Data About Wavelength Shifts of the First Peak and Down-Peak Change With the Temperature Change

Metrics