Abstract

The theory of guided waves in metal–dielectric planar multilayer structures is applied to reduce the loss and maximize optical nonlinearity for efficient terahertz-field generation in a surface electromagnetic wave by femtosecond laser pulses confined in a χ(2) nonlinear planar waveguide. For typical parameters of thin-film polymer waveguides and metal–dielectric interfaces, the optimal size of the χ(2) waveguide core providing the maximum efficiency of terahertz plasmon-field generation is shown to be less than the wavelength of the optical pump field.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990).
    [CrossRef]
  2. C. A. Schmuttenmaer, "Exploring dynamics in the far-infrared with terahertz spectroscopy," Chem. Rev. (Washington, D.C.) 104, 1759-1779 (2004).
    [CrossRef] [PubMed]
  3. R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, "Chemical recognition of gases and gas mixtures with terahertz waves," Opt. Lett. 21, 2011-2013 (1996).
    [CrossRef] [PubMed]
  4. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, "T-ray imaging," IEEE J. Sel. Top. Quantum Electron. 2, 679-692 (1996).
    [CrossRef]
  5. X.-C. Zhang, "Terahertz wave imaging: horizons and hurdles," Phys. Med. Biol. 47, 3667-3677 (2002).
    [CrossRef] [PubMed]
  6. D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, "Terahertz frequency sensing and imaging: a time of reckoning future applications?," Proc. IEEE 93, 1722-1743 (2005).
    [CrossRef]
  7. L. S. Mukina, M. M. Nazarov, and A. P. Shkurinov, "Propagation of THz plasmon pulse on corrugated and flat metal surface," Surf. Sci. 600, 4771-4776 (2006).
    [CrossRef]
  8. P. H. Siegel, "Terahertz technology in biology and medicine," IEEE Trans. Microwave Theory Tech. 52, 2438-2447 (2004).
    [CrossRef]
  9. R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulsed imaging of skin cancer in the time and frequency domain," J. Biol. Phys. 29, 257-261 (2003).
    [CrossRef]
  10. M. Nagel, P. Haring Bolivar, M. Brucherseifer, and H. Kurz, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002).
    [CrossRef]
  11. R. W. McGowan, G. Gallot, and D. Grischkowsky, "Propagation of ultra-wideband, short pulses of THz radiation through submillimeter-diameter circular waveguides," Opt. Lett. 24, 1431-1433 (1999).
    [CrossRef]
  12. G. Gallot, S. P. Jamison, R. W. McGowan, and D Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17, 851-863 (2000).
    [CrossRef]
  13. R. Mendis and D. Grischkowsky, "Undistorted guided-wave propagation of subpicosecond terahertz pulses," Opt. Lett. 26, 846-848 (2001).
    [CrossRef]
  14. K. Wang and M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
    [CrossRef] [PubMed]
  15. T. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904/1-3 (2005).
    [CrossRef]
  16. R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449 (2000).
    [CrossRef]
  17. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987 (2000).
    [CrossRef]
  18. H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634 (2002).
    [CrossRef]
  19. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 308-310 (2006).
    [CrossRef] [PubMed]
  20. T. Jeon and D. Grischkowsky, "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet," Appl. Phys. Lett. 88, 061113 (2006).
    [CrossRef]
  21. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C.-Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13021-13029 (2006).
    [CrossRef] [PubMed]
  22. H. Cao, R. A. Linke, and A. Nahata, "Broadband generation of terahertz radiation in a waveguide," Opt. Lett. 29, 1751-1753 (2004).
    [CrossRef] [PubMed]
  23. C.-L. Chen, Foundation for Guided-Wave Optics (Wiley, 2006).
  24. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  25. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1120 (1983).
    [CrossRef] [PubMed]
  26. N. Laman and D. Grischkowsky, "Reduced conductivity in the terahertz skin-depth layer of metals," Appl. Phys. Lett. 90, 122115 (2007).
    [CrossRef]
  27. M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, "THz surface plasmon jump between two metal edges," Opt. Commun. 271, 33-39 (2007).
    [CrossRef]
  28. J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. Haring Bolivar, and H. Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range"Phys. Rev. B 69, 155427 (2004).
    [CrossRef]
  29. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  30. A. M. Zheltikov, "The physical limit for the waveguide enhancement of nonlinear-optical processes," Opt. Spectrosc. 95, 410-415 (2003).
    [CrossRef]
  31. M. Foster, K. Moll, and A. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004).
    [CrossRef] [PubMed]
  32. A. M. Zheltikov, "Gaussian-mode analysis of waveguide-enhanced Kerr-type nonlinearity of optical fibers and photonic wires," J. Opt. Soc. Am. B 22, 1100-1104 (2005).
    [CrossRef]
  33. L. Chen, J. Shakya, and M. Lipson, "Subwavelength confinement in an integrated metal slot waveguide on silicon," Opt. Lett. 31, 2133-2135 (2006).
    [CrossRef] [PubMed]

2007 (2)

N. Laman and D. Grischkowsky, "Reduced conductivity in the terahertz skin-depth layer of metals," Appl. Phys. Lett. 90, 122115 (2007).
[CrossRef]

M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, "THz surface plasmon jump between two metal edges," Opt. Commun. 271, 33-39 (2007).
[CrossRef]

2006 (5)

2005 (3)

A. M. Zheltikov, "Gaussian-mode analysis of waveguide-enhanced Kerr-type nonlinearity of optical fibers and photonic wires," J. Opt. Soc. Am. B 22, 1100-1104 (2005).
[CrossRef]

T. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904/1-3 (2005).
[CrossRef]

D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, "Terahertz frequency sensing and imaging: a time of reckoning future applications?," Proc. IEEE 93, 1722-1743 (2005).
[CrossRef]

2004 (6)

J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. Haring Bolivar, and H. Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range"Phys. Rev. B 69, 155427 (2004).
[CrossRef]

P. H. Siegel, "Terahertz technology in biology and medicine," IEEE Trans. Microwave Theory Tech. 52, 2438-2447 (2004).
[CrossRef]

C. A. Schmuttenmaer, "Exploring dynamics in the far-infrared with terahertz spectroscopy," Chem. Rev. (Washington, D.C.) 104, 1759-1779 (2004).
[CrossRef] [PubMed]

K. Wang and M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

M. Foster, K. Moll, and A. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004).
[CrossRef] [PubMed]

H. Cao, R. A. Linke, and A. Nahata, "Broadband generation of terahertz radiation in a waveguide," Opt. Lett. 29, 1751-1753 (2004).
[CrossRef] [PubMed]

2003 (2)

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulsed imaging of skin cancer in the time and frequency domain," J. Biol. Phys. 29, 257-261 (2003).
[CrossRef]

A. M. Zheltikov, "The physical limit for the waveguide enhancement of nonlinear-optical processes," Opt. Spectrosc. 95, 410-415 (2003).
[CrossRef]

2002 (3)

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634 (2002).
[CrossRef]

M. Nagel, P. Haring Bolivar, M. Brucherseifer, and H. Kurz, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002).
[CrossRef]

X.-C. Zhang, "Terahertz wave imaging: horizons and hurdles," Phys. Med. Biol. 47, 3667-3677 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (3)

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17, 851-863 (2000).
[CrossRef]

1999 (1)

1996 (2)

1990 (1)

1983 (1)

Appl. Opt. (1)

Appl. Phys. Lett. (6)

M. Nagel, P. Haring Bolivar, M. Brucherseifer, and H. Kurz, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987 (2000).
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634 (2002).
[CrossRef]

N. Laman and D. Grischkowsky, "Reduced conductivity in the terahertz skin-depth layer of metals," Appl. Phys. Lett. 90, 122115 (2007).
[CrossRef]

T. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904/1-3 (2005).
[CrossRef]

T. Jeon and D. Grischkowsky, "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet," Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

Chem. Rev. (1)

C. A. Schmuttenmaer, "Exploring dynamics in the far-infrared with terahertz spectroscopy," Chem. Rev. (Washington, D.C.) 104, 1759-1779 (2004).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, "T-ray imaging," IEEE J. Sel. Top. Quantum Electron. 2, 679-692 (1996).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

P. H. Siegel, "Terahertz technology in biology and medicine," IEEE Trans. Microwave Theory Tech. 52, 2438-2447 (2004).
[CrossRef]

J. Appl. Phys. (1)

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449 (2000).
[CrossRef]

J. Biol. Phys. (1)

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulsed imaging of skin cancer in the time and frequency domain," J. Biol. Phys. 29, 257-261 (2003).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nature (1)

K. Wang and M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, "THz surface plasmon jump between two metal edges," Opt. Commun. 271, 33-39 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Opt. Spectrosc. (1)

A. M. Zheltikov, "The physical limit for the waveguide enhancement of nonlinear-optical processes," Opt. Spectrosc. 95, 410-415 (2003).
[CrossRef]

Phys. Med. Biol. (1)

X.-C. Zhang, "Terahertz wave imaging: horizons and hurdles," Phys. Med. Biol. 47, 3667-3677 (2002).
[CrossRef] [PubMed]

Phys. Rev. B (1)

J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. Haring Bolivar, and H. Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range"Phys. Rev. B 69, 155427 (2004).
[CrossRef]

Proc. IEEE (1)

D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, "Terahertz frequency sensing and imaging: a time of reckoning future applications?," Proc. IEEE 93, 1722-1743 (2005).
[CrossRef]

Surf. Sci. (1)

L. S. Mukina, M. M. Nazarov, and A. P. Shkurinov, "Propagation of THz plasmon pulse on corrugated and flat metal surface," Surf. Sci. 600, 4771-4776 (2006).
[CrossRef]

Other (3)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

C.-L. Chen, Foundation for Guided-Wave Optics (Wiley, 2006).

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(Color online) Multilayer metal–dielectric waveguide structures: (a) thin-film-waveguide–metal-layer structure; (b) and (c) parallel-plate waveguides with a (b) multilayer and (c) uniform core.

Fig. 2
Fig. 2

(Color online) Surface-plasmon modes of optical (curves 1 and 2) and THz (curves 3 and 4) fields on a metal–dielectric interface with | ε 1 | 100 , | ε 2 | 40 , and n 1 1.7 for the THz field and | ε 1 | 5 10 4 , | ε 2 | 2 10 5 , and n 1 1.6 for the optical field.

Fig. 3
Fig. 3

(Color online) Typical transverse field profile in the waveguide mode of an optical field localized in the central layer of a thin-film waveguide structure.

Fig. 4
Fig. 4

(Color online) Factor F = η 2 / V and the ratio d / a required to isolate the central layer from a metal–dielectric interface in the waveguide structure shown in Figs. 1(a) and 3 calculated as a function of the waveguide parameter V for the fundamental mode localized in the central layer I for n 1 1.7 and n 2 1.5 .

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

ε = ε 1 i ε 2 = n ˜ 2 = ( n i κ ) 2 ,
tan h [ ( β ˜ 2 k 0 2 n 1 2 ) 1 / 2 h ] = n 1 2 ε ( β 2 k 0 2 ε ) 1 / 2 ( β 2 k 0 2 n 1 2 ) 1 / 2 ,
β ˜ k 0 ( n 1 2 ε n 1 2 + ε ) 1 / 2 .
E x { β ω n 1 2 exp ( q x ) exp [ i ( ω t β ˜ z ) ] x 0 β ω n 2 exp ( p x ) exp [ i ( ω t β ˜ z ) ] x 0 ,
E z { i q ω n 1 2 exp ( q x ) exp [ i ( ω t β ˜ z ) ] x 0 i p ω n 2 exp ( p x ) exp [ i ( ω t β ˜ z ) ] x 0 ,
q 2 = n 1 4 n 1 2 + ε 1 ( ω c ) 2 = n 1 4 | ε 1 | n 1 2 ( ω c ) 2 ,
p 2 = ε 1 2 n 1 2 + ε 1 ( ω c ) 2 = ε 1 2 | ε 1 | n 1 2 ( ω c ) 2 ,
β = ( n 1 2 ε 1 ε 1 + n 1 2 ) 1 / 2 ω c = ( n 2 κ 2 n 1 2 + n 2 κ 2 ) 1 / 2 n 1 ω c ,
α = n 1 3 ε 2 ε 1 1 / 2 ( n 1 2 + ε 1 ) 3 / 2 ω c = 2 n κ n 1 3 [ ( n 2 κ 2 ) ( n 1 2 + n 2 κ 2 ) 3 ] 1 / 2 ω c .
α opt 1 λ ε 2 ( x ) | f ( x ) | 2 d x | f ( x ) | 2 d x ,
n g = n THz ,
n THz ( 2 a + d + d 2 a n 1 THz 2 + d + d n 2 THz 2 ) 1 / 2 ,
P THz θ P 1 P 2 l 2 ,
θ = | χ THz ( 2 ) ( x ) f 1 ( x ) f 2 ( x ) f 3 ( x ) d x | 2 D 1 D 2 D 3
P THz P 1 P 2 η 2 a | χ THz ( 2 ) | 2 ,
η = 1 n 1 2 n 2 2 u 2 n 1 2 n 2 2 V 2 + n 1 4 W 3 + n 2 4 W u 2 ,

Metrics