Abstract

We developed an interferometric testbed to stabilize environmental motions over time scales of several hours and a length scale of 1m. Typically, thermal and seismic motions on the ground are larger than 1μm over these scales, affecting the precision of more sensitive measurements. To suppress such motions, we built an active stabilization system composed of interferometric sensors, a hexapod actuator, and a frequency-stabilized laser. With this stabilized testbed, environmental motions were suppressed down to the nanometer level. This system will allow us to perform sensitive measurements, such as ground testing of the Laser Interferometer Space Antenna, in the presence of environmental noise.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription