Abstract

We developed an interferometric testbed to stabilize environmental motions over time scales of several hours and a length scale of 1m. Typically, thermal and seismic motions on the ground are larger than 1μm over these scales, affecting the precision of more sensitive measurements. To suppress such motions, we built an active stabilization system composed of interferometric sensors, a hexapod actuator, and a frequency-stabilized laser. With this stabilized testbed, environmental motions were suppressed down to the nanometer level. This system will allow us to perform sensitive measurements, such as ground testing of the Laser Interferometer Space Antenna, in the presence of environmental noise.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bender, K. Danzmann, and the LISA Study Team, “Laser interferometer space antenna for the detection of gravitational waves, pre-Phase A report,” 2nd ed. Tech. Rep. MPQ233 (Max-Planck-Institut für Quantenoptik, 1998).
  2. M. Stephens, R. Craig, J. Leitch, R. Pierce, R. Nerem, P. Bender, and B. Loomis, “Demonstration of an interferometric laser ranging system for a follow-on gravity mission to GRACE,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium (IEEE, 2006), pp. 1115-1118.
    [CrossRef]
  3. Y. Aso, M. Ando, K. Kawabe, S. Otsuka, and K. Tsubono, “Stabilization of a Fabry-Perot interferometer using a suspension-point interferometer,” Phys. Lett. A 327, 1-8 (2004).
    [CrossRef]
  4. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680-682 (1981).
    [CrossRef]
  5. A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband Earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
    [CrossRef]
  6. D. Shaddock, B. Ware, P. G. Halverson, R. E. Spero, and B. Klipstein, “Overview of the LISA phasemeter,” in Proceedings of Laser Interferometer Space Antenna: 6th International LISA Symposium, S. M. Merkowitz and J. C. Livas, eds. (American Institute of Physics, 2006), pp. 654-660.
  7. D. Weise, C. Braxmaier, M. Kersten, W. Holota, and U. Johann, “Optical design of the LISA interferometric metrology system,” in Proceedings of Laser Interferometer Space Antenna: 6th International LISA Symposium, S. M. Merkowitzand J. C. Livas, eds. (American Institute of Physics, 2006), pp. 389-394.
  8. D. Shaddock and A. Abromovici, “Solution-assisted optical contacting: components in optical contact can be adjusted for about a minute,” NASA Tech. Brief NPO30731 (NASA, 2004), http://www.nasatech.com/Briefs/Mar04/NPO30731.html.
  9. E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257-S267 (2005).
    [CrossRef]
  10. G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
    [CrossRef]
  11. K. Liu, J. M. Fitzgerald, and F. L. Lewis, “Kinematic analysis of a Stewart platform manipulator,” IEEE Trans. Ind. Electron. 40, 282-293 (1993).
    [CrossRef]
  12. C. Pernechele, F. Bortoletto, and K. Reif, “Hexapod control for an active secondary mirror: general concept and test results,” Appl. Opt. 37, 6816-6821 (1998).
    [CrossRef]
  13. J. A. Dooley and P. R. Lawson, “Technology plan for the Terrestrial Planet Finder Coronagraph,” JPL publication 05-8 (Jet Propulsion Laboratory, 2005).
  14. B. Barish and R. Weiss, “LIGO and the detection of gravitational waves,” Phys. Today 52, 44-50 (1999).
    [CrossRef]
  15. F. Raab and M. Fine, “The effect of Earth tides on LIGO interferometers,” LIGO document LIGO-T970059-01-D (Laser Interferometer Gravitation Wave Observatory, 1997), http://www.ligo.caltech.edu/docs/T/T970059-01.pdf.
  16. LSC Advanced Detector Committee, “LSC instrument science white paper 2007,” LIGO document LIGO-T070137-00-R (Laser Interferometer Gravitational Wave Observatory, 2007), http://www.ligo.caltech.edu/docs/T/T070137-05/T070137-05.pdf.

2005 (2)

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

2004 (1)

Y. Aso, M. Ando, K. Kawabe, S. Otsuka, and K. Tsubono, “Stabilization of a Fabry-Perot interferometer using a suspension-point interferometer,” Phys. Lett. A 327, 1-8 (2004).
[CrossRef]

2002 (1)

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband Earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

1999 (1)

B. Barish and R. Weiss, “LIGO and the detection of gravitational waves,” Phys. Today 52, 44-50 (1999).
[CrossRef]

1998 (1)

1993 (1)

K. Liu, J. M. Fitzgerald, and F. L. Lewis, “Kinematic analysis of a Stewart platform manipulator,” IEEE Trans. Ind. Electron. 40, 282-293 (1993).
[CrossRef]

1981 (1)

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680-682 (1981).
[CrossRef]

Abromovici, A.

D. Shaddock and A. Abromovici, “Solution-assisted optical contacting: components in optical contact can be adjusted for about a minute,” NASA Tech. Brief NPO30731 (NASA, 2004), http://www.nasatech.com/Briefs/Mar04/NPO30731.html.

Ando, M.

Y. Aso, M. Ando, K. Kawabe, S. Otsuka, and K. Tsubono, “Stabilization of a Fabry-Perot interferometer using a suspension-point interferometer,” Phys. Lett. A 327, 1-8 (2004).
[CrossRef]

Araya, A.

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband Earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

Aso, Y.

Y. Aso, M. Ando, K. Kawabe, S. Otsuka, and K. Tsubono, “Stabilization of a Fabry-Perot interferometer using a suspension-point interferometer,” Phys. Lett. A 327, 1-8 (2004).
[CrossRef]

Baer, T.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680-682 (1981).
[CrossRef]

Barish, B.

B. Barish and R. Weiss, “LIGO and the detection of gravitational waves,” Phys. Today 52, 44-50 (1999).
[CrossRef]

Bender, P.

M. Stephens, R. Craig, J. Leitch, R. Pierce, R. Nerem, P. Bender, and B. Loomis, “Demonstration of an interferometric laser ranging system for a follow-on gravity mission to GRACE,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium (IEEE, 2006), pp. 1115-1118.
[CrossRef]

P. Bender, K. Danzmann, and the LISA Study Team, “Laser interferometer space antenna for the detection of gravitational waves, pre-Phase A report,” 2nd ed. Tech. Rep. MPQ233 (Max-Planck-Institut für Quantenoptik, 1998).

Bogenstahl, J.

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

Bortoletto, F.

Braxmaier, C.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

D. Weise, C. Braxmaier, M. Kersten, W. Holota, and U. Johann, “Optical design of the LISA interferometric metrology system,” in Proceedings of Laser Interferometer Space Antenna: 6th International LISA Symposium, S. M. Merkowitzand J. C. Livas, eds. (American Institute of Physics, 2006), pp. 389-394.

Cagnoli, G.

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

Caldwell, M.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

Craig, R.

M. Stephens, R. Craig, J. Leitch, R. Pierce, R. Nerem, P. Bender, and B. Loomis, “Demonstration of an interferometric laser ranging system for a follow-on gravity mission to GRACE,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium (IEEE, 2006), pp. 1115-1118.
[CrossRef]

Danzmann, K.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

P. Bender, K. Danzmann, and the LISA Study Team, “Laser interferometer space antenna for the detection of gravitational waves, pre-Phase A report,” 2nd ed. Tech. Rep. MPQ233 (Max-Planck-Institut für Quantenoptik, 1998).

Deshpande, A.

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

Dooley, J. A.

J. A. Dooley and P. R. Lawson, “Technology plan for the Terrestrial Planet Finder Coronagraph,” JPL publication 05-8 (Jet Propulsion Laboratory, 2005).

Draaisma, F.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

Elliffe, E. J.

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

Fine, M.

F. Raab and M. Fine, “The effect of Earth tides on LIGO interferometers,” LIGO document LIGO-T970059-01-D (Laser Interferometer Gravitation Wave Observatory, 1997), http://www.ligo.caltech.edu/docs/T/T970059-01.pdf.

Fitzgerald, J. M.

K. Liu, J. M. Fitzgerald, and F. L. Lewis, “Kinematic analysis of a Stewart platform manipulator,” IEEE Trans. Ind. Electron. 40, 282-293 (1993).
[CrossRef]

Fukao, Y.

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband Earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

Garci'a, A.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

Hall, J. L.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680-682 (1981).
[CrossRef]

Halverson, P. G.

D. Shaddock, B. Ware, P. G. Halverson, R. E. Spero, and B. Klipstein, “Overview of the LISA phasemeter,” in Proceedings of Laser Interferometer Space Antenna: 6th International LISA Symposium, S. M. Merkowitz and J. C. Livas, eds. (American Institute of Physics, 2006), pp. 654-660.

Heinzel, G.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

Hollberg, L.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680-682 (1981).
[CrossRef]

Holota, W.

D. Weise, C. Braxmaier, M. Kersten, W. Holota, and U. Johann, “Optical design of the LISA interferometric metrology system,” in Proceedings of Laser Interferometer Space Antenna: 6th International LISA Symposium, S. M. Merkowitzand J. C. Livas, eds. (American Institute of Physics, 2006), pp. 389-394.

Hough, J.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

Jennrich, O.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

Johann, U.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

D. Weise, C. Braxmaier, M. Kersten, W. Holota, and U. Johann, “Optical design of the LISA interferometric metrology system,” in Proceedings of Laser Interferometer Space Antenna: 6th International LISA Symposium, S. M. Merkowitzand J. C. Livas, eds. (American Institute of Physics, 2006), pp. 389-394.

Kawabe, K.

Y. Aso, M. Ando, K. Kawabe, S. Otsuka, and K. Tsubono, “Stabilization of a Fabry-Perot interferometer using a suspension-point interferometer,” Phys. Lett. A 327, 1-8 (2004).
[CrossRef]

Kersten, M.

D. Weise, C. Braxmaier, M. Kersten, W. Holota, and U. Johann, “Optical design of the LISA interferometric metrology system,” in Proceedings of Laser Interferometer Space Antenna: 6th International LISA Symposium, S. M. Merkowitzand J. C. Livas, eds. (American Institute of Physics, 2006), pp. 389-394.

Killow, C.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

Klipstein, B.

D. Shaddock, B. Ware, P. G. Halverson, R. E. Spero, and B. Klipstein, “Overview of the LISA phasemeter,” in Proceedings of Laser Interferometer Space Antenna: 6th International LISA Symposium, S. M. Merkowitz and J. C. Livas, eds. (American Institute of Physics, 2006), pp. 654-660.

Kunugi, T.

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband Earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

Lawson, P. R.

J. A. Dooley and P. R. Lawson, “Technology plan for the Terrestrial Planet Finder Coronagraph,” JPL publication 05-8 (Jet Propulsion Laboratory, 2005).

Leitch, J.

M. Stephens, R. Craig, J. Leitch, R. Pierce, R. Nerem, P. Bender, and B. Loomis, “Demonstration of an interferometric laser ranging system for a follow-on gravity mission to GRACE,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium (IEEE, 2006), pp. 1115-1118.
[CrossRef]

Lewis, F. L.

K. Liu, J. M. Fitzgerald, and F. L. Lewis, “Kinematic analysis of a Stewart platform manipulator,” IEEE Trans. Ind. Electron. 40, 282-293 (1993).
[CrossRef]

Liu, K.

K. Liu, J. M. Fitzgerald, and F. L. Lewis, “Kinematic analysis of a Stewart platform manipulator,” IEEE Trans. Ind. Electron. 40, 282-293 (1993).
[CrossRef]

Loomis, B.

M. Stephens, R. Craig, J. Leitch, R. Pierce, R. Nerem, P. Bender, and B. Loomis, “Demonstration of an interferometric laser ranging system for a follow-on gravity mission to GRACE,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium (IEEE, 2006), pp. 1115-1118.
[CrossRef]

Maruyama, S.

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband Earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

Middleton, K.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

Mio, N.

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband Earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

Moriwaki, S.

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband Earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

Nerem, R.

M. Stephens, R. Craig, J. Leitch, R. Pierce, R. Nerem, P. Bender, and B. Loomis, “Demonstration of an interferometric laser ranging system for a follow-on gravity mission to GRACE,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium (IEEE, 2006), pp. 1115-1118.
[CrossRef]

Otsuka, S.

Y. Aso, M. Ando, K. Kawabe, S. Otsuka, and K. Tsubono, “Stabilization of a Fabry-Perot interferometer using a suspension-point interferometer,” Phys. Lett. A 327, 1-8 (2004).
[CrossRef]

Pernechele, C.

Pierce, R.

M. Stephens, R. Craig, J. Leitch, R. Pierce, R. Nerem, P. Bender, and B. Loomis, “Demonstration of an interferometric laser ranging system for a follow-on gravity mission to GRACE,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium (IEEE, 2006), pp. 1115-1118.
[CrossRef]

Raab, F.

F. Raab and M. Fine, “The effect of Earth tides on LIGO interferometers,” LIGO document LIGO-T970059-01-D (Laser Interferometer Gravitation Wave Observatory, 1997), http://www.ligo.caltech.edu/docs/T/T970059-01.pdf.

Reid, S.

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

Reif, K.

Robertson, D.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

Robinson, H. G.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680-682 (1981).
[CrossRef]

Rowan, S.

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

Rüdiger, , A.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

Schilling, R.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

Shaddock, D.

D. Shaddock, B. Ware, P. G. Halverson, R. E. Spero, and B. Klipstein, “Overview of the LISA phasemeter,” in Proceedings of Laser Interferometer Space Antenna: 6th International LISA Symposium, S. M. Merkowitz and J. C. Livas, eds. (American Institute of Physics, 2006), pp. 654-660.

D. Shaddock and A. Abromovici, “Solution-assisted optical contacting: components in optical contact can be adjusted for about a minute,” NASA Tech. Brief NPO30731 (NASA, 2004), http://www.nasatech.com/Briefs/Mar04/NPO30731.html.

Spero, R. E.

D. Shaddock, B. Ware, P. G. Halverson, R. E. Spero, and B. Klipstein, “Overview of the LISA phasemeter,” in Proceedings of Laser Interferometer Space Antenna: 6th International LISA Symposium, S. M. Merkowitz and J. C. Livas, eds. (American Institute of Physics, 2006), pp. 654-660.

Steier, F.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

Stephens, M.

M. Stephens, R. Craig, J. Leitch, R. Pierce, R. Nerem, P. Bender, and B. Loomis, “Demonstration of an interferometric laser ranging system for a follow-on gravity mission to GRACE,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium (IEEE, 2006), pp. 1115-1118.
[CrossRef]

Suda, N.

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband Earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

te Plate, M.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

Tsubono, K.

Y. Aso, M. Ando, K. Kawabe, S. Otsuka, and K. Tsubono, “Stabilization of a Fabry-Perot interferometer using a suspension-point interferometer,” Phys. Lett. A 327, 1-8 (2004).
[CrossRef]

Wand, V.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

Ward, H.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

Ware, B.

D. Shaddock, B. Ware, P. G. Halverson, R. E. Spero, and B. Klipstein, “Overview of the LISA phasemeter,” in Proceedings of Laser Interferometer Space Antenna: 6th International LISA Symposium, S. M. Merkowitz and J. C. Livas, eds. (American Institute of Physics, 2006), pp. 654-660.

Weise, D.

D. Weise, C. Braxmaier, M. Kersten, W. Holota, and U. Johann, “Optical design of the LISA interferometric metrology system,” in Proceedings of Laser Interferometer Space Antenna: 6th International LISA Symposium, S. M. Merkowitzand J. C. Livas, eds. (American Institute of Physics, 2006), pp. 389-394.

Weiss, R.

B. Barish and R. Weiss, “LIGO and the detection of gravitational waves,” Phys. Today 52, 44-50 (1999).
[CrossRef]

Yamada, I.

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband Earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680-682 (1981).
[CrossRef]

Class. Quantum Grav. (2)

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005).
[CrossRef]

IEEE Trans. Ind. Electron. (1)

K. Liu, J. M. Fitzgerald, and F. L. Lewis, “Kinematic analysis of a Stewart platform manipulator,” IEEE Trans. Ind. Electron. 40, 282-293 (1993).
[CrossRef]

Phys. Lett. A (1)

Y. Aso, M. Ando, K. Kawabe, S. Otsuka, and K. Tsubono, “Stabilization of a Fabry-Perot interferometer using a suspension-point interferometer,” Phys. Lett. A 327, 1-8 (2004).
[CrossRef]

Phys. Today (1)

B. Barish and R. Weiss, “LIGO and the detection of gravitational waves,” Phys. Today 52, 44-50 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband Earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

Other (8)

D. Shaddock, B. Ware, P. G. Halverson, R. E. Spero, and B. Klipstein, “Overview of the LISA phasemeter,” in Proceedings of Laser Interferometer Space Antenna: 6th International LISA Symposium, S. M. Merkowitz and J. C. Livas, eds. (American Institute of Physics, 2006), pp. 654-660.

D. Weise, C. Braxmaier, M. Kersten, W. Holota, and U. Johann, “Optical design of the LISA interferometric metrology system,” in Proceedings of Laser Interferometer Space Antenna: 6th International LISA Symposium, S. M. Merkowitzand J. C. Livas, eds. (American Institute of Physics, 2006), pp. 389-394.

D. Shaddock and A. Abromovici, “Solution-assisted optical contacting: components in optical contact can be adjusted for about a minute,” NASA Tech. Brief NPO30731 (NASA, 2004), http://www.nasatech.com/Briefs/Mar04/NPO30731.html.

P. Bender, K. Danzmann, and the LISA Study Team, “Laser interferometer space antenna for the detection of gravitational waves, pre-Phase A report,” 2nd ed. Tech. Rep. MPQ233 (Max-Planck-Institut für Quantenoptik, 1998).

M. Stephens, R. Craig, J. Leitch, R. Pierce, R. Nerem, P. Bender, and B. Loomis, “Demonstration of an interferometric laser ranging system for a follow-on gravity mission to GRACE,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium (IEEE, 2006), pp. 1115-1118.
[CrossRef]

F. Raab and M. Fine, “The effect of Earth tides on LIGO interferometers,” LIGO document LIGO-T970059-01-D (Laser Interferometer Gravitation Wave Observatory, 1997), http://www.ligo.caltech.edu/docs/T/T970059-01.pdf.

LSC Advanced Detector Committee, “LSC instrument science white paper 2007,” LIGO document LIGO-T070137-00-R (Laser Interferometer Gravitational Wave Observatory, 2007), http://www.ligo.caltech.edu/docs/T/T070137-05/T070137-05.pdf.

J. A. Dooley and P. R. Lawson, “Technology plan for the Terrestrial Planet Finder Coronagraph,” JPL publication 05-8 (Jet Propulsion Laboratory, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Concept of our experiment. Without active stabilization (top), the two separated optical benches (indicated as squares) drift with respect to each other over long time scales. We measure this motion with stabilization interferometers by measuring distances between the fiducial points on the optical benches. With active stabilization (bottom), the distances are kept constant by actuating the platform supporting the optical bench. The “virtually-connected” optical benches provide a stable environment for interferometric testing.

Fig. 2
Fig. 2

Laser frequency stabilization system using iodine. FI, Faraday isolator; CR, frequency-doubling crystal in an oven; DM, dichroic mirror; HWP, half-wave plate; EOM, electro-optic modulator; AOM, acousto-optic modulator; PBS, polarized beam splitter; M, mirror; L, lens; D, detector; MX, mixer; LPF, low-pass filter; f E , EOM modulation frequency; f A , AOM modulation frequency.

Fig. 3
Fig. 3

Stabilization interferometers and control scheme. COL, collimator; CPL, coupler; PM, polarization-maintaining fiber; NBS, nonpolarized beam splitter; CC, corner cube; HV Amp., high-voltage amplifier. Other notations are the same as at Fig. 2. The optical setup for measurements interferometer is not shown in this figure.

Fig. 4
Fig. 4

Measurement interferometer (homodyne type). HQWP, λ / 8 wave plate; GT, Glan–Thompson polarizer. Other notations are the same as at Fig. 2. Stabilization interferometers are not shown here.

Fig. 5
Fig. 5

Measurement interferometer (heterodyne type). A third laser source is used to generate heterodyne signal. Notations are the same as at Fig. 2. Stabilization interferometers are not shown.

Fig. 6
Fig. 6

Hexapod. The top platform is supported and driven by six PZT actuators, which are connected by flexible tip joints. The top platform has mounting holes for optics.

Fig. 7
Fig. 7

Transfer function of hexapod. The transfer function from matrix input voltage to displacement is shown. The peak structures above 200 Hz are mechanical resonances.

Fig. 8
Fig. 8

Stabilization result in frequency domain. “Free-running” indicates displacement motion between two optical benches before stabilization. “Stabilized (Homodyne)” and “Stabilized (Heterodyne)” indicate measured motions with the homodyne and the heterodyne measurement interferometers, respectively, after stabilization. The dashed–dotted curve shows LISA stability requirement needed for ground testing using two optical benches.

Fig. 9
Fig. 9

Stabilization result in time domain. Note that stabilized motion is at the nanometer level (left axis), and free-running motion is at the micrometer level (right axis). They were measured at the same time.

Fig. 10
Fig. 10

Noise sources of interferometer (homodyne). “Stabilized (Homodyne)” indicates the stabilization results by homodyne interferometer (same as in Fig. 8). 0.2% of free-running noise in Fig. 8 is plotted as “Coupling from other DoF.” The peaks around 30 Hz are from seismic motion seen in our laboratory environment.

Fig. 11
Fig. 11

Noise sources of interferometer (heterodyne). “Stabilized (Heterodyne)” indicates stabilization results with the heterodyne measurement interferometer (same as in Fig. 8). The two noise levels due to coupling were estimated from direct measurement of transfer function and free-running motions.

Fig. 12
Fig. 12

DMI result in time domain. The curve labeled “DMI result (left axis)” represents displacement measured by DMI while our stabilization system is working. The curve labeled “Room temperature (right axis)” represents the temperature change around the DMI laser source during the measurement.

Metrics