Abstract

A numerical model of a Pr3+-doped low-phonon-energy fiber pumped with 488, 980, and 1480 nm lasers is presented to explore the possibility for simultaneous 1300, 1490, and 1600nm band amplification for the first time, to the best of my knowledge. The rate and power propagation equations of the model are solved numerically and the dependence of the gains at the three bands on pump power and input signal power are calculated. The results predict that, with 488, 980, and 1480 nm pump power of 100, 12, and 1.5 mW, and with Pr3+ concentrations of 1.2×1025  ions/m3, the signals around 1300, 1490, and 1600nm can be equally amplified with a gain of 21.0dB in the active fiber with a length of 6.0m.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. G. Choi, K. H. Kim, B. J. Park, and J. Heo, “1.6 μm emission from Pr3+:(3F3,3F4) to 3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses,” Appl. Phys. Lett. 78, 1249-1251 (2001).
    [CrossRef]
  2. P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer process in Er3+-doped and Er3+, Pr3+-co-doped ZBLAN glasses,” Phys. Rev. B 62, 856-864 (2000).
    [CrossRef]
  3. S. H. Park, D. C. Lee, J. Heo, and D. W. Shin, “Energy transfer between Er3+ and Pr3+ in chalcogenide glasses for dual wavelength fiber-optic amplifiers,” J. Appl. Phys. 91, 9072-9077 (2002).
    [CrossRef]
  4. Y. G. Choi, B. J. Park. K. H. Kim, and J. Heo, “Pr3+- and Pr3+/Er3+-doped selenide glasses for potential 1.6 mm optical amplifier materials,” ETRI J. 23, 97-105 (2001).
    [CrossRef]
  5. C.-H. Yeh, C.-C. Lee, and S. Chi, “120 nm Bandwidth erbium- doped fiber amplifier in parallel configuration,” IEEE Photon. Technol. Lett. 16, 1637-1639 (2004).
    [CrossRef]
  6. T. Naito, T. Tanaka, and K. Torii, “A broadband distributed Raman amplifier for bandwidth beyond 100 nm,” in Optical Fiber Communication Conference (Optical Society of America, 2002), paper TuR, pp. 116-117.
  7. C. Jiang and W. Hu, “Multiband-fiber Raman amplifier,” in Proceedings of the Ninth Optoelectronics and Communications Conference (OECC) and the Third International Conference on Optical Internet (COIN) (SPIE, 2004).
  8. D. J. Coleman, P. Golding, T. A. King, and S. D. Jackson, “Spectroscopic and energy-transfer parameters for Er3+-doped and Er3+, Pr3+-codoped GeGaS glasses,” J. Opt. Soc. Am. B 19, 1982-1989 (2002).
    [CrossRef]
  9. D. J. Coleman, S. D. Jackson, P. Golding, and T. A. King, “Measurements of the spectroscopic and energy transfer parameters for Er3+-doped and Er3+, Pr3+-codoped PbO−Bi2O3−Ga2O3 glasses,” J. Opt. Soc. Am. B 19, 2927-2937(2002).
    [CrossRef]
  10. S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Tellurite glasses for 1.3 μm optical amplifiers,” Opt. Commun. 168, 369-373(1999).
    [CrossRef]
  11. S. H. Park, D. C. Lee, J. Heo, and H. S. Kim, “Pr3+/Er3+Co-doped Ge-As-Ga-S glasses as dual-wavelength fiber-optic amplifiers at 1.31 and 1.55 μm window,” J. Am. Ceram. Soc. 83, 1284-1286 (2000).
    [CrossRef]

2004

C.-H. Yeh, C.-C. Lee, and S. Chi, “120 nm Bandwidth erbium- doped fiber amplifier in parallel configuration,” IEEE Photon. Technol. Lett. 16, 1637-1639 (2004).
[CrossRef]

2002

2001

Y. G. Choi, B. J. Park. K. H. Kim, and J. Heo, “Pr3+- and Pr3+/Er3+-doped selenide glasses for potential 1.6 mm optical amplifier materials,” ETRI J. 23, 97-105 (2001).
[CrossRef]

Y. G. Choi, K. H. Kim, B. J. Park, and J. Heo, “1.6 μm emission from Pr3+:(3F3,3F4) to 3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses,” Appl. Phys. Lett. 78, 1249-1251 (2001).
[CrossRef]

2000

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer process in Er3+-doped and Er3+, Pr3+-co-doped ZBLAN glasses,” Phys. Rev. B 62, 856-864 (2000).
[CrossRef]

S. H. Park, D. C. Lee, J. Heo, and H. S. Kim, “Pr3+/Er3+Co-doped Ge-As-Ga-S glasses as dual-wavelength fiber-optic amplifiers at 1.31 and 1.55 μm window,” J. Am. Ceram. Soc. 83, 1284-1286 (2000).
[CrossRef]

1999

S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Tellurite glasses for 1.3 μm optical amplifiers,” Opt. Commun. 168, 369-373(1999).
[CrossRef]

Chi, S.

C.-H. Yeh, C.-C. Lee, and S. Chi, “120 nm Bandwidth erbium- doped fiber amplifier in parallel configuration,” IEEE Photon. Technol. Lett. 16, 1637-1639 (2004).
[CrossRef]

Choi, Y. G.

Y. G. Choi, K. H. Kim, B. J. Park, and J. Heo, “1.6 μm emission from Pr3+:(3F3,3F4) to 3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses,” Appl. Phys. Lett. 78, 1249-1251 (2001).
[CrossRef]

Y. G. Choi, B. J. Park. K. H. Kim, and J. Heo, “Pr3+- and Pr3+/Er3+-doped selenide glasses for potential 1.6 mm optical amplifier materials,” ETRI J. 23, 97-105 (2001).
[CrossRef]

Chung, P. S.

S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Tellurite glasses for 1.3 μm optical amplifiers,” Opt. Commun. 168, 369-373(1999).
[CrossRef]

Coleman, D. J.

Golding, P.

Golding, P. S.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer process in Er3+-doped and Er3+, Pr3+-co-doped ZBLAN glasses,” Phys. Rev. B 62, 856-864 (2000).
[CrossRef]

Heo, J.

Y. G. Choi, B. J. Park. K. H. Kim, and J. Heo, “Pr3+- and Pr3+/Er3+-doped selenide glasses for potential 1.6 mm optical amplifier materials,” ETRI J. 23, 97-105 (2001).
[CrossRef]

S. H. Park, D. C. Lee, J. Heo, and H. S. Kim, “Pr3+/Er3+Co-doped Ge-As-Ga-S glasses as dual-wavelength fiber-optic amplifiers at 1.31 and 1.55 μm window,” J. Am. Ceram. Soc. 83, 1284-1286 (2000).
[CrossRef]

Heo, J. H.

Y. G. Choi, K. H. Kim, B. J. Park, and J. Heo, “1.6 μm emission from Pr3+:(3F3,3F4) to 3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses,” Appl. Phys. Lett. 78, 1249-1251 (2001).
[CrossRef]

Heo, J. W.

S. H. Park, D. C. Lee, J. Heo, and D. W. Shin, “Energy transfer between Er3+ and Pr3+ in chalcogenide glasses for dual wavelength fiber-optic amplifiers,” J. Appl. Phys. 91, 9072-9077 (2002).
[CrossRef]

Hu, W.

C. Jiang and W. Hu, “Multiband-fiber Raman amplifier,” in Proceedings of the Ninth Optoelectronics and Communications Conference (OECC) and the Third International Conference on Optical Internet (COIN) (SPIE, 2004).

Jackson, S. D.

Jiang, C.

C. Jiang and W. Hu, “Multiband-fiber Raman amplifier,” in Proceedings of the Ninth Optoelectronics and Communications Conference (OECC) and the Third International Conference on Optical Internet (COIN) (SPIE, 2004).

Kim, H. S.

S. H. Park, D. C. Lee, J. Heo, and H. S. Kim, “Pr3+/Er3+Co-doped Ge-As-Ga-S glasses as dual-wavelength fiber-optic amplifiers at 1.31 and 1.55 μm window,” J. Am. Ceram. Soc. 83, 1284-1286 (2000).
[CrossRef]

Kim, K. H.

Y. G. Choi, K. H. Kim, B. J. Park, and J. Heo, “1.6 μm emission from Pr3+:(3F3,3F4) to 3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses,” Appl. Phys. Lett. 78, 1249-1251 (2001).
[CrossRef]

Y. G. Choi, B. J. Park. K. H. Kim, and J. Heo, “Pr3+- and Pr3+/Er3+-doped selenide glasses for potential 1.6 mm optical amplifier materials,” ETRI J. 23, 97-105 (2001).
[CrossRef]

King, T. A.

Lee, C.-C.

C.-H. Yeh, C.-C. Lee, and S. Chi, “120 nm Bandwidth erbium- doped fiber amplifier in parallel configuration,” IEEE Photon. Technol. Lett. 16, 1637-1639 (2004).
[CrossRef]

Lee, D. C.

S. H. Park, D. C. Lee, J. Heo, and D. W. Shin, “Energy transfer between Er3+ and Pr3+ in chalcogenide glasses for dual wavelength fiber-optic amplifiers,” J. Appl. Phys. 91, 9072-9077 (2002).
[CrossRef]

S. H. Park, D. C. Lee, J. Heo, and H. S. Kim, “Pr3+/Er3+Co-doped Ge-As-Ga-S glasses as dual-wavelength fiber-optic amplifiers at 1.31 and 1.55 μm window,” J. Am. Ceram. Soc. 83, 1284-1286 (2000).
[CrossRef]

Man, S. Q.

S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Tellurite glasses for 1.3 μm optical amplifiers,” Opt. Commun. 168, 369-373(1999).
[CrossRef]

Naito, T.

T. Naito, T. Tanaka, and K. Torii, “A broadband distributed Raman amplifier for bandwidth beyond 100 nm,” in Optical Fiber Communication Conference (Optical Society of America, 2002), paper TuR, pp. 116-117.

Park, B. H.

Y. G. Choi, K. H. Kim, B. J. Park, and J. Heo, “1.6 μm emission from Pr3+:(3F3,3F4) to 3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses,” Appl. Phys. Lett. 78, 1249-1251 (2001).
[CrossRef]

Park, B. J.

Y. G. Choi, B. J. Park. K. H. Kim, and J. Heo, “Pr3+- and Pr3+/Er3+-doped selenide glasses for potential 1.6 mm optical amplifier materials,” ETRI J. 23, 97-105 (2001).
[CrossRef]

Park, S. H.

S. H. Park, D. C. Lee, J. Heo, and D. W. Shin, “Energy transfer between Er3+ and Pr3+ in chalcogenide glasses for dual wavelength fiber-optic amplifiers,” J. Appl. Phys. 91, 9072-9077 (2002).
[CrossRef]

S. H. Park, D. C. Lee, J. Heo, and H. S. Kim, “Pr3+/Er3+Co-doped Ge-As-Ga-S glasses as dual-wavelength fiber-optic amplifiers at 1.31 and 1.55 μm window,” J. Am. Ceram. Soc. 83, 1284-1286 (2000).
[CrossRef]

Pollnau, M.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer process in Er3+-doped and Er3+, Pr3+-co-doped ZBLAN glasses,” Phys. Rev. B 62, 856-864 (2000).
[CrossRef]

Pun, E. Y. B.

S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Tellurite glasses for 1.3 μm optical amplifiers,” Opt. Commun. 168, 369-373(1999).
[CrossRef]

Shin, D. W.

S. H. Park, D. C. Lee, J. Heo, and D. W. Shin, “Energy transfer between Er3+ and Pr3+ in chalcogenide glasses for dual wavelength fiber-optic amplifiers,” J. Appl. Phys. 91, 9072-9077 (2002).
[CrossRef]

Tanaka, T.

T. Naito, T. Tanaka, and K. Torii, “A broadband distributed Raman amplifier for bandwidth beyond 100 nm,” in Optical Fiber Communication Conference (Optical Society of America, 2002), paper TuR, pp. 116-117.

Torii, K.

T. Naito, T. Tanaka, and K. Torii, “A broadband distributed Raman amplifier for bandwidth beyond 100 nm,” in Optical Fiber Communication Conference (Optical Society of America, 2002), paper TuR, pp. 116-117.

Yeh, C.-H.

C.-H. Yeh, C.-C. Lee, and S. Chi, “120 nm Bandwidth erbium- doped fiber amplifier in parallel configuration,” IEEE Photon. Technol. Lett. 16, 1637-1639 (2004).
[CrossRef]

Appl. Phys. Lett.

Y. G. Choi, K. H. Kim, B. J. Park, and J. Heo, “1.6 μm emission from Pr3+:(3F3,3F4) to 3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses,” Appl. Phys. Lett. 78, 1249-1251 (2001).
[CrossRef]

ETRI J.

Y. G. Choi, B. J. Park. K. H. Kim, and J. Heo, “Pr3+- and Pr3+/Er3+-doped selenide glasses for potential 1.6 mm optical amplifier materials,” ETRI J. 23, 97-105 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

C.-H. Yeh, C.-C. Lee, and S. Chi, “120 nm Bandwidth erbium- doped fiber amplifier in parallel configuration,” IEEE Photon. Technol. Lett. 16, 1637-1639 (2004).
[CrossRef]

J. Am. Ceram. Soc.

S. H. Park, D. C. Lee, J. Heo, and H. S. Kim, “Pr3+/Er3+Co-doped Ge-As-Ga-S glasses as dual-wavelength fiber-optic amplifiers at 1.31 and 1.55 μm window,” J. Am. Ceram. Soc. 83, 1284-1286 (2000).
[CrossRef]

J. Appl. Phys.

S. H. Park, D. C. Lee, J. Heo, and D. W. Shin, “Energy transfer between Er3+ and Pr3+ in chalcogenide glasses for dual wavelength fiber-optic amplifiers,” J. Appl. Phys. 91, 9072-9077 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Tellurite glasses for 1.3 μm optical amplifiers,” Opt. Commun. 168, 369-373(1999).
[CrossRef]

Phys. Rev. B

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer process in Er3+-doped and Er3+, Pr3+-co-doped ZBLAN glasses,” Phys. Rev. B 62, 856-864 (2000).
[CrossRef]

Other

T. Naito, T. Tanaka, and K. Torii, “A broadband distributed Raman amplifier for bandwidth beyond 100 nm,” in Optical Fiber Communication Conference (Optical Society of America, 2002), paper TuR, pp. 116-117.

C. Jiang and W. Hu, “Multiband-fiber Raman amplifier,” in Proceedings of the Ninth Optoelectronics and Communications Conference (OECC) and the Third International Conference on Optical Internet (COIN) (SPIE, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of energy levels and transition configuration of Pr 3 + -co-doped fiber pumped with 488, 980, and 1480 nm LDs.

Fig. 2
Fig. 2

Variation of the gain at 1310, 1490, and 1600 nm with (a) pump and (b) input signal powers. Fiber length is 6.0 m and Pr 3 + concentration is 2.4 × 10 25   ions / m 3 .

Fig. 3
Fig. 3

Gain spectra with different pump configurations: (a) 980 nm / 100 mW , (b) 1480 nm / 100 mW , (c) 488 nm / 980 nm / 1480 nm : 100 / 12 / 1.5 mW .

Tables (1)

Tables Icon

Table 1 Spectroscopic Parameters of Pr 3 + -Doped Telluride Fiber for Numerical Calculation

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

N 1 t = ( W 13 + W 14 + W 15 ) N 1 + A 21 N 2 + ( W 31 + A 31 ) N 3 + ( A 41 + W 41 ) N 4 + ( A 51 + W 51 ) N 5 , N 2 t = ( W 24 + A 21 ) N 2 + ( W 42 + A 42 ) N 4 , N 3 t = W 13 N 1 ( W 31 + A 31 ) N 3 + A 43 N 4 , N 4 t = W 14 N 1 ( W 41 + A 43 ) N 4 + A 54 N 5 , N 5 t = W 15 N 1 + W 25 N 2 ( W 52 + A 51 + A 52 + A 54 + W 56 ) N 5 + ( W 65 + A 65 ) N 6 , N 6 t = W 16 N 1 + W 56 N 5 ( W 65 + A 65 ) N 6 ,
N = N 1 + N 2 + N 3 + N 4 + N 5 + N 6 .
P 1 z = Γ 1 [ ( σ 488 e N 5 σ 488 a N 1 ) ] P 1 + α p P 1 , P 2 z = Γ 2 [ ( σ 980 e N 4 σ 980 a N 1 ) ] P 2 + α p P 2 , P 3 z = Γ 3 [ ( σ 1480 e N 3 σ 1480 a N 1 ) ] P 3 + α p P 3 ,
P 1310 z = Γ 1310 [ σ 42 s e N 4 σ 24 s a N 2 ] P 1310 α s P 1310 , P 1490 z = Γ 1490 [ σ 54 s e N 5 σ 45 s a N 4 ] P 1490 α s P 1490 , P 1600 z = Γ 1600 [ σ 31 s e N 3 σ 13 s a N 1 ] P 1600 α s P 1600 , P a s e 1 ± z = ( σ 42 s e N 4 σ 24 s a N 2 ) P a s e 1 ± ± 2 h ν Δ ν σ 42 s e + α a s e 1 P a s e 1 ± , P a s e 2 ± z = ( σ 54 s e N 5 σ 45 s a N 4 ) P a s e 2 ± ± 2 h ν Δ ν σ 54 s e + α a s e 2 P a s e 2 ± , P a s e 3 ± z = ( σ 31 s e N 3 σ 13 s a N 1 ) P a s e 1 ± ± 2 h ν Δ ν σ 31 s e + α a s e 3 P a s e 3 ± ,

Metrics