Abstract

The surface and edge emissions from dye-filled and dye-topped polycarbonate and polymethyl methacrylate luminescent solar concentrators were measured. We demonstrate that about 40–50% of the absorbed light energy (and 50–70% of the photons) is lost through the top and bottom surfaces of the filled waveguide. In most cases the escape cone losses are greater at the top than the bottom surface.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Hermann, “Luminescent solar concentrators--a review,” Sol. Energy 29, 323-329 (1982).
    [CrossRef]
  2. I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degrad. Stabil. 73, 403-410(2001).
    [CrossRef]
  3. K. Barnham, J. L. Marques, and J. Hassard, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76, 1197-1199 (2000).
    [CrossRef]
  4. R. Reisfeld, “Future technological applications of rare-earth-doped materials,” J. Less-Common Met. 93, 243-251(1983).
    [CrossRef]
  5. S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Solar Energy Mater. Sol. Cells 91, 67-75(2007).
    [CrossRef]
  6. A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximizing the light output of a luminescent solar collector,” Sol. Energy Mater. 76, 655-667 (2004).
  7. A. Cutolo, L. Carlomusto, F. Reale, and I. Rendina, “Tapered and inhomogeneous dielectric light concentrators,” Opt. Laser Technol. 21, 193-197 (1989).
  8. W. A. Shurcliff and R. C. Jones, “The trapping of fluorescent light produced within objects of high geometrical symmetry,” J. Opt. Soc. Am. 39, 912-196 (1949).
    [CrossRef]
  9. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation,” Appl. Opt. 18, 3090-3110 (1979).
    [CrossRef] [PubMed]
  10. M. Carrascosa, S. Unamuno, and F. Aguilo-Lopez, “Monte Carlo simulation of the performance of PMMA luminescent solar collectors,” Appl. Opt. 22, 3236-3241 (1983).
    [CrossRef] [PubMed]
  11. E. W. Thulstrup, J. Michl, and J. H. Eggers, “Polarization spectra in stretched polymer sheets. II. Separation,” J. Phys. Chem. 74, 3868-3878 (1970).
    [CrossRef]
  12. E. W. Thulstrup and J. Michl, “A critical comparison of methods for analysis of linear dichroism of solutes in stretched polymers,” J. Phys. Chem. 84, 82-93 (1980).
    [CrossRef]
  13. L. V. Natarajan, F. M. Stein, and R. E. Blankenship, “Linear dichroism and fluorescence polarization of diphenyl polyenes in stretched polyethylene films,” Chem. Phys. Lett. 95, 525-528 (1983).
    [CrossRef]
  14. C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, and M. Piñol, “Polarized photoluminescence and order parameters of 'in situ' photopolymerized liquid crystal films,” J. Appl. Phys. 87, 274-279 (2000).
    [CrossRef]
  15. M. van Gurp and Y. Levine, “Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. I. Theory,” J. Chem. Phys. 90, 4095-4102(1989).
    [CrossRef]
  16. F. L. Arbeloa, V. Martínez Martínez, T. Arbeloa, and I. L. Arbeloa, “Photoresponse and anisotropy of rhodamine dye intercalated in ordered clay layered films,” J. Photochem. Photobiol. C 8, 85-108 (2007).
    [CrossRef]
  17. J. Roncali and F. Garnier, “Photon-transport properties of luminescent solar concentrators: analysis and optimization,” Appl. Opt. 23, 2809-2817 (1984).
    [CrossRef] [PubMed]
  18. M. G. Debije, R. H. L. van der Blom, D. J. Broer, and C. W. M. Bastiaansen, “Using selectively-reflecting organic mirrors to improve light output from a luminescent solar concentrator,” presented at the World Renewable Energy Conference IX, Florence, Italy, 19-25 August 2006.
  19. M. G. Debije, D. J. Broer, and C. W. M. Bastiaansen, “Effect of dye alignment on the output of a luminescent solar concentrator,” presented at the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 3-7 September 2007.
  20. B. S. Richards and K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via the luminescence down-shifting: ray tracing simulations,” Prog. Photovoltaics 15, 27-34 (2007).
    [CrossRef]
  21. B. S. Richards, A. Shalav, and R. P. Corkish, “A low escape-cone loss luminescent concentrator,” presented at the 19th European Photovoltaic Solar Energy Conference, Paris, France, 7-11 June 2004.

2007 (3)

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Solar Energy Mater. Sol. Cells 91, 67-75(2007).
[CrossRef]

F. L. Arbeloa, V. Martínez Martínez, T. Arbeloa, and I. L. Arbeloa, “Photoresponse and anisotropy of rhodamine dye intercalated in ordered clay layered films,” J. Photochem. Photobiol. C 8, 85-108 (2007).
[CrossRef]

B. S. Richards and K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via the luminescence down-shifting: ray tracing simulations,” Prog. Photovoltaics 15, 27-34 (2007).
[CrossRef]

2004 (1)

A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximizing the light output of a luminescent solar collector,” Sol. Energy Mater. 76, 655-667 (2004).

2001 (1)

I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degrad. Stabil. 73, 403-410(2001).
[CrossRef]

2000 (2)

K. Barnham, J. L. Marques, and J. Hassard, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76, 1197-1199 (2000).
[CrossRef]

C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, and M. Piñol, “Polarized photoluminescence and order parameters of 'in situ' photopolymerized liquid crystal films,” J. Appl. Phys. 87, 274-279 (2000).
[CrossRef]

1989 (2)

M. van Gurp and Y. Levine, “Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. I. Theory,” J. Chem. Phys. 90, 4095-4102(1989).
[CrossRef]

A. Cutolo, L. Carlomusto, F. Reale, and I. Rendina, “Tapered and inhomogeneous dielectric light concentrators,” Opt. Laser Technol. 21, 193-197 (1989).

1984 (1)

1983 (3)

L. V. Natarajan, F. M. Stein, and R. E. Blankenship, “Linear dichroism and fluorescence polarization of diphenyl polyenes in stretched polyethylene films,” Chem. Phys. Lett. 95, 525-528 (1983).
[CrossRef]

M. Carrascosa, S. Unamuno, and F. Aguilo-Lopez, “Monte Carlo simulation of the performance of PMMA luminescent solar collectors,” Appl. Opt. 22, 3236-3241 (1983).
[CrossRef] [PubMed]

R. Reisfeld, “Future technological applications of rare-earth-doped materials,” J. Less-Common Met. 93, 243-251(1983).
[CrossRef]

1982 (1)

A. M. Hermann, “Luminescent solar concentrators--a review,” Sol. Energy 29, 323-329 (1982).
[CrossRef]

1980 (1)

E. W. Thulstrup and J. Michl, “A critical comparison of methods for analysis of linear dichroism of solutes in stretched polymers,” J. Phys. Chem. 84, 82-93 (1980).
[CrossRef]

1979 (1)

1970 (1)

E. W. Thulstrup, J. Michl, and J. H. Eggers, “Polarization spectra in stretched polymer sheets. II. Separation,” J. Phys. Chem. 74, 3868-3878 (1970).
[CrossRef]

1949 (1)

Aguilo-Lopez, F.

Alcalá, R.

C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, and M. Piñol, “Polarized photoluminescence and order parameters of 'in situ' photopolymerized liquid crystal films,” J. Appl. Phys. 87, 274-279 (2000).
[CrossRef]

Arbeloa, F. L.

F. L. Arbeloa, V. Martínez Martínez, T. Arbeloa, and I. L. Arbeloa, “Photoresponse and anisotropy of rhodamine dye intercalated in ordered clay layered films,” J. Photochem. Photobiol. C 8, 85-108 (2007).
[CrossRef]

Arbeloa, I. L.

F. L. Arbeloa, V. Martínez Martínez, T. Arbeloa, and I. L. Arbeloa, “Photoresponse and anisotropy of rhodamine dye intercalated in ordered clay layered films,” J. Photochem. Photobiol. C 8, 85-108 (2007).
[CrossRef]

Arbeloa, T.

F. L. Arbeloa, V. Martínez Martínez, T. Arbeloa, and I. L. Arbeloa, “Photoresponse and anisotropy of rhodamine dye intercalated in ordered clay layered films,” J. Photochem. Photobiol. C 8, 85-108 (2007).
[CrossRef]

Bailey, S. T.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Solar Energy Mater. Sol. Cells 91, 67-75(2007).
[CrossRef]

Barnham, K.

K. Barnham, J. L. Marques, and J. Hassard, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76, 1197-1199 (2000).
[CrossRef]

Baseler, T. T.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Solar Energy Mater. Sol. Cells 91, 67-75(2007).
[CrossRef]

Bastiaansen, C. W. M.

M. G. Debije, R. H. L. van der Blom, D. J. Broer, and C. W. M. Bastiaansen, “Using selectively-reflecting organic mirrors to improve light output from a luminescent solar concentrator,” presented at the World Renewable Energy Conference IX, Florence, Italy, 19-25 August 2006.

M. G. Debije, D. J. Broer, and C. W. M. Bastiaansen, “Effect of dye alignment on the output of a luminescent solar concentrator,” presented at the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 3-7 September 2007.

Batchelder, J. S.

Baumberg, I.

I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degrad. Stabil. 73, 403-410(2001).
[CrossRef]

Beaumont, G. T.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Solar Energy Mater. Sol. Cells 91, 67-75(2007).
[CrossRef]

Berezin, O.

I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degrad. Stabil. 73, 403-410(2001).
[CrossRef]

Blankenship, R. E.

L. V. Natarajan, F. M. Stein, and R. E. Blankenship, “Linear dichroism and fluorescence polarization of diphenyl polyenes in stretched polyethylene films,” Chem. Phys. Lett. 95, 525-528 (1983).
[CrossRef]

Broer, D. J.

M. G. Debije, D. J. Broer, and C. W. M. Bastiaansen, “Effect of dye alignment on the output of a luminescent solar concentrator,” presented at the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 3-7 September 2007.

M. G. Debije, R. H. L. van der Blom, D. J. Broer, and C. W. M. Bastiaansen, “Using selectively-reflecting organic mirrors to improve light output from a luminescent solar concentrator,” presented at the World Renewable Energy Conference IX, Florence, Italy, 19-25 August 2006.

Broussard, D. R.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Solar Energy Mater. Sol. Cells 91, 67-75(2007).
[CrossRef]

Carlomusto, L.

A. Cutolo, L. Carlomusto, F. Reale, and I. Rendina, “Tapered and inhomogeneous dielectric light concentrators,” Opt. Laser Technol. 21, 193-197 (1989).

Carrascosa, M.

Cases, R.

C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, and M. Piñol, “Polarized photoluminescence and order parameters of 'in situ' photopolymerized liquid crystal films,” J. Appl. Phys. 87, 274-279 (2000).
[CrossRef]

Cole, T.

Corkish, R. P.

B. S. Richards, A. Shalav, and R. P. Corkish, “A low escape-cone loss luminescent concentrator,” presented at the 19th European Photovoltaic Solar Energy Conference, Paris, France, 7-11 June 2004.

Cutolo, A.

A. Cutolo, L. Carlomusto, F. Reale, and I. Rendina, “Tapered and inhomogeneous dielectric light concentrators,” Opt. Laser Technol. 21, 193-197 (1989).

Debije, M. G.

M. G. Debije, R. H. L. van der Blom, D. J. Broer, and C. W. M. Bastiaansen, “Using selectively-reflecting organic mirrors to improve light output from a luminescent solar concentrator,” presented at the World Renewable Energy Conference IX, Florence, Italy, 19-25 August 2006.

M. G. Debije, D. J. Broer, and C. W. M. Bastiaansen, “Effect of dye alignment on the output of a luminescent solar concentrator,” presented at the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 3-7 September 2007.

Drabkin, A.

I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degrad. Stabil. 73, 403-410(2001).
[CrossRef]

Earp, A. A.

A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximizing the light output of a luminescent solar collector,” Sol. Energy Mater. 76, 655-667 (2004).

Eggers, J. H.

E. W. Thulstrup, J. Michl, and J. H. Eggers, “Polarization spectra in stretched polymer sheets. II. Separation,” J. Phys. Chem. 74, 3868-3878 (1970).
[CrossRef]

Franklin, J.

A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximizing the light output of a luminescent solar collector,” Sol. Energy Mater. 76, 655-667 (2004).

Garnier, F.

Gorelik, B.

I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degrad. Stabil. 73, 403-410(2001).
[CrossRef]

Hanes, M. S.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Solar Energy Mater. Sol. Cells 91, 67-75(2007).
[CrossRef]

Hassard, J.

K. Barnham, J. L. Marques, and J. Hassard, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76, 1197-1199 (2000).
[CrossRef]

Hermann, A. M.

A. M. Hermann, “Luminescent solar concentrators--a review,” Sol. Energy 29, 323-329 (1982).
[CrossRef]

Jones, R. C.

Kogan, L.

I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degrad. Stabil. 73, 403-410(2001).
[CrossRef]

Layhue, J. M.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Solar Energy Mater. Sol. Cells 91, 67-75(2007).
[CrossRef]

Levine, Y.

M. van Gurp and Y. Levine, “Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. I. Theory,” J. Chem. Phys. 90, 4095-4102(1989).
[CrossRef]

Lokey, G. E.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Solar Energy Mater. Sol. Cells 91, 67-75(2007).
[CrossRef]

Marques, J. L.

K. Barnham, J. L. Marques, and J. Hassard, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76, 1197-1199 (2000).
[CrossRef]

Martínez, C.

C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, and M. Piñol, “Polarized photoluminescence and order parameters of 'in situ' photopolymerized liquid crystal films,” J. Appl. Phys. 87, 274-279 (2000).
[CrossRef]

Martínez, V. Martínez

F. L. Arbeloa, V. Martínez Martínez, T. Arbeloa, and I. L. Arbeloa, “Photoresponse and anisotropy of rhodamine dye intercalated in ordered clay layered films,” J. Photochem. Photobiol. C 8, 85-108 (2007).
[CrossRef]

McIntosh, K. R.

B. S. Richards and K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via the luminescence down-shifting: ray tracing simulations,” Prog. Photovoltaics 15, 27-34 (2007).
[CrossRef]

McLafferty, J. B.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Solar Energy Mater. Sol. Cells 91, 67-75(2007).
[CrossRef]

Michl, J.

E. W. Thulstrup and J. Michl, “A critical comparison of methods for analysis of linear dichroism of solutes in stretched polymers,” J. Phys. Chem. 84, 82-93 (1980).
[CrossRef]

E. W. Thulstrup, J. Michl, and J. H. Eggers, “Polarization spectra in stretched polymer sheets. II. Separation,” J. Phys. Chem. 74, 3868-3878 (1970).
[CrossRef]

Natarajan, L. V.

L. V. Natarajan, F. M. Stein, and R. E. Blankenship, “Linear dichroism and fluorescence polarization of diphenyl polyenes in stretched polyethylene films,” Chem. Phys. Lett. 95, 525-528 (1983).
[CrossRef]

Oriol, L.

C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, and M. Piñol, “Polarized photoluminescence and order parameters of 'in situ' photopolymerized liquid crystal films,” J. Appl. Phys. 87, 274-279 (2000).
[CrossRef]

Piñol, M.

C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, and M. Piñol, “Polarized photoluminescence and order parameters of 'in situ' photopolymerized liquid crystal films,” J. Appl. Phys. 87, 274-279 (2000).
[CrossRef]

Reale, F.

A. Cutolo, L. Carlomusto, F. Reale, and I. Rendina, “Tapered and inhomogeneous dielectric light concentrators,” Opt. Laser Technol. 21, 193-197 (1989).

Reisfeld, R.

R. Reisfeld, “Future technological applications of rare-earth-doped materials,” J. Less-Common Met. 93, 243-251(1983).
[CrossRef]

Rendina, I.

A. Cutolo, L. Carlomusto, F. Reale, and I. Rendina, “Tapered and inhomogeneous dielectric light concentrators,” Opt. Laser Technol. 21, 193-197 (1989).

Richards, B. S.

B. S. Richards and K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via the luminescence down-shifting: ray tracing simulations,” Prog. Photovoltaics 15, 27-34 (2007).
[CrossRef]

B. S. Richards, A. Shalav, and R. P. Corkish, “A low escape-cone loss luminescent concentrator,” presented at the 19th European Photovoltaic Solar Energy Conference, Paris, France, 7-11 June 2004.

Roncali, J.

Sánchez, C.

C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, and M. Piñol, “Polarized photoluminescence and order parameters of 'in situ' photopolymerized liquid crystal films,” J. Appl. Phys. 87, 274-279 (2000).
[CrossRef]

Shalav, A.

B. S. Richards, A. Shalav, and R. P. Corkish, “A low escape-cone loss luminescent concentrator,” presented at the 19th European Photovoltaic Solar Energy Conference, Paris, France, 7-11 June 2004.

Shearer, J. D. M.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Solar Energy Mater. Sol. Cells 91, 67-75(2007).
[CrossRef]

Shurcliff, W. A.

Smith, G. B.

A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximizing the light output of a luminescent solar collector,” Sol. Energy Mater. 76, 655-667 (2004).

Stein, F. M.

L. V. Natarajan, F. M. Stein, and R. E. Blankenship, “Linear dichroism and fluorescence polarization of diphenyl polyenes in stretched polyethylene films,” Chem. Phys. Lett. 95, 525-528 (1983).
[CrossRef]

Swift, P. D.

A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximizing the light output of a luminescent solar collector,” Sol. Energy Mater. 76, 655-667 (2004).

Thulstrup, E. W.

E. W. Thulstrup and J. Michl, “A critical comparison of methods for analysis of linear dichroism of solutes in stretched polymers,” J. Phys. Chem. 84, 82-93 (1980).
[CrossRef]

E. W. Thulstrup, J. Michl, and J. H. Eggers, “Polarization spectra in stretched polymer sheets. II. Separation,” J. Phys. Chem. 74, 3868-3878 (1970).
[CrossRef]

Unamuno, S.

van der Blom, R. H. L.

M. G. Debije, R. H. L. van der Blom, D. J. Broer, and C. W. M. Bastiaansen, “Using selectively-reflecting organic mirrors to improve light output from a luminescent solar concentrator,” presented at the World Renewable Energy Conference IX, Florence, Italy, 19-25 August 2006.

van Gurp, M.

M. van Gurp and Y. Levine, “Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. I. Theory,” J. Chem. Phys. 90, 4095-4102(1989).
[CrossRef]

Villacampa, B.

C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, and M. Piñol, “Polarized photoluminescence and order parameters of 'in situ' photopolymerized liquid crystal films,” J. Appl. Phys. 87, 274-279 (2000).
[CrossRef]

Voskobojnik, M.

I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degrad. Stabil. 73, 403-410(2001).
[CrossRef]

Wittmershaus, B. P.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Solar Energy Mater. Sol. Cells 91, 67-75(2007).
[CrossRef]

Zaidman, M.

I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degrad. Stabil. 73, 403-410(2001).
[CrossRef]

Zewail, A. H.

Zhang, Y.-Z.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Solar Energy Mater. Sol. Cells 91, 67-75(2007).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

K. Barnham, J. L. Marques, and J. Hassard, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76, 1197-1199 (2000).
[CrossRef]

Chem. Phys. Lett. (1)

L. V. Natarajan, F. M. Stein, and R. E. Blankenship, “Linear dichroism and fluorescence polarization of diphenyl polyenes in stretched polyethylene films,” Chem. Phys. Lett. 95, 525-528 (1983).
[CrossRef]

J. Appl. Phys. (1)

C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, and M. Piñol, “Polarized photoluminescence and order parameters of 'in situ' photopolymerized liquid crystal films,” J. Appl. Phys. 87, 274-279 (2000).
[CrossRef]

J. Chem. Phys. (1)

M. van Gurp and Y. Levine, “Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. I. Theory,” J. Chem. Phys. 90, 4095-4102(1989).
[CrossRef]

J. Less-Common Met. (1)

R. Reisfeld, “Future technological applications of rare-earth-doped materials,” J. Less-Common Met. 93, 243-251(1983).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Photochem. Photobiol. C (1)

F. L. Arbeloa, V. Martínez Martínez, T. Arbeloa, and I. L. Arbeloa, “Photoresponse and anisotropy of rhodamine dye intercalated in ordered clay layered films,” J. Photochem. Photobiol. C 8, 85-108 (2007).
[CrossRef]

J. Phys. Chem. (2)

E. W. Thulstrup, J. Michl, and J. H. Eggers, “Polarization spectra in stretched polymer sheets. II. Separation,” J. Phys. Chem. 74, 3868-3878 (1970).
[CrossRef]

E. W. Thulstrup and J. Michl, “A critical comparison of methods for analysis of linear dichroism of solutes in stretched polymers,” J. Phys. Chem. 84, 82-93 (1980).
[CrossRef]

Opt. Laser Technol. (1)

A. Cutolo, L. Carlomusto, F. Reale, and I. Rendina, “Tapered and inhomogeneous dielectric light concentrators,” Opt. Laser Technol. 21, 193-197 (1989).

Polym. Degrad. Stabil. (1)

I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degrad. Stabil. 73, 403-410(2001).
[CrossRef]

Prog. Photovoltaics (1)

B. S. Richards and K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via the luminescence down-shifting: ray tracing simulations,” Prog. Photovoltaics 15, 27-34 (2007).
[CrossRef]

Sol. Energy (1)

A. M. Hermann, “Luminescent solar concentrators--a review,” Sol. Energy 29, 323-329 (1982).
[CrossRef]

Sol. Energy Mater. (1)

A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximizing the light output of a luminescent solar collector,” Sol. Energy Mater. 76, 655-667 (2004).

Solar Energy Mater. Sol. Cells (1)

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Solar Energy Mater. Sol. Cells 91, 67-75(2007).
[CrossRef]

Other (3)

M. G. Debije, R. H. L. van der Blom, D. J. Broer, and C. W. M. Bastiaansen, “Using selectively-reflecting organic mirrors to improve light output from a luminescent solar concentrator,” presented at the World Renewable Energy Conference IX, Florence, Italy, 19-25 August 2006.

M. G. Debije, D. J. Broer, and C. W. M. Bastiaansen, “Effect of dye alignment on the output of a luminescent solar concentrator,” presented at the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 3-7 September 2007.

B. S. Richards, A. Shalav, and R. P. Corkish, “A low escape-cone loss luminescent concentrator,” presented at the 19th European Photovoltaic Solar Energy Conference, Paris, France, 7-11 June 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup for measurement of the surface losses in the LSC systems. The measurement of edge emission was accomplished in the same manner, except the waveguide is placed horizontally, and illumination is incident from above.

Fig. 2
Fig. 2

Experimental setup for the measurement of top/bottom loss ratios.

Fig. 3
Fig. 3

Representative absorption (solid line) and emission (dotted lines) spectra of Red305 dye-filled waveguides.

Fig. 4
Fig. 4

Measured edge emission from polycarbonate (filled symbols) and PMMA (open symbols) waveguides with dye in the waveguide (squares) and in a thin polycarbonate (triangle) or penta-acrylate (circle) surface layer.

Fig. 5
Fig. 5

(a) Measured spectrum obtained from illumination of the blank polycarbonate waveguide (black line) and from the dye-filled polycarbonate waveguide (gray line). (b) Result from subtracting the spectrum obtained from blank polycarbonate waveguide from the emission spectrum of polycarbonate-waveguide-containing dye (peak absorbance of 2.5). Integration over region I gives the power absorbed by the dye and integration of region II gives the power emitted by the dye through the bottom surface.

Fig. 6
Fig. 6

Calculated total surface energy loss from polycarbonate (filled symbols) and PMMA (open symbols) waveguides with dye in the waveguide (squares) and in a thin polycarbonate (triangle) or penta-acrylate (circle) surface layer.

Fig. 7
Fig. 7

Measured ratios of top to bottom surface emissions for dye-filled polycarbonate (filled squares) and dye-filled PMMA (filled triangle) waveguides, and for dye-topped polycarbonate waveguides with Red305 in a polycarbonate (open square) or penta-acrylate (open circles) matrix and dye-topped PMMA waveguides with Red305 in a polycarbonate (open diamonds) or penta-acrylate (open triangles) matrix.

Fig. 8
Fig. 8

Calculated emission profile for an isotropic dye in a penta-acrylate matrix ( n = 1.586 ) illuminated from directly overhead [14, 15].

Fig. 9
Fig. 9

Calculated percentage of photons emitted outside the waveguiding cone of polycarbonate ( n = 1.586 ) as a function of the incidence angle (with respect to the waveguide normal) of the illumination source.

Fig. 10
Fig. 10

Calculated number of interactions per ray passing through the filled waveguides. Determined using the RAYLENE code.

Tables (1)

Tables Icon

Table 1 Measured Bottom Loss and Derived Top Losses in Energy and Photons from the Polycarbonate Dye-Filled Waveguides

Metrics