Abstract

A compact, highly robust airborne High Spectral Resolution Lidar (HSRL) that provides measurements of aerosol backscatter and extinction coefficients and aerosol depolarization at two wavelengths has been developed, tested, and deployed on nine field experiments (over 650 flight hours). A unique and advantageous design element of the HSRL system is the ability to radiometrically calibrate the instrument internally, eliminating any reliance on vicarious calibration from atmospheric targets for which aerosol loading must be estimated. This paper discusses the design of the airborne HSRL, the internal calibration and accuracy of the instrument, data products produced, and observations and calibration data from the first two field missions: the Joint Intercontinental Chemical Transport Experiment—Phase B (INTEX-B)/Megacity Aerosol Experiment—Mexico City (MAX-Mex)/Megacities Impacts on Regional and Global Environment (MILAGRO) field mission (hereafter MILAGRO) and the Gulf of Mexico Atmospheric Composition and Climate Study/Texas Air Quality Study II (hereafter GoMACCS/TexAQS II).

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the IPCC, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds. (Cambridge University, 2007), pp. 996.
  2. D. B. Harper, A. Cook, C. Hostetler, J. W. Hair, and T. L. Mack, “NASA Langley airborne High Spectral Resolution Lidar instrument description,” in Proceedings of 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (ILRC, 2006), p. PD1-5.
  3. J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, and D. B. Harper, “The NASA Langley Airborne High Spectral Resolution Lidar for Measurements of Aerosols and Clouds,” in Proceedings of 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (ILRC, 2006), pp. 411-414.
  4. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211-220 (1981).
  5. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638-1643 (1985).
  6. F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482-489 (1972).
    [CrossRef]
  7. Z. Liu, N. Sugimoto, and T. Murayama, “Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar,” Appl. Opt. 41, 2760-2767 (2002).
    [CrossRef]
  8. D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. 112, D16202 (2007), doi:10.1029/2006JD008292..
    [CrossRef]
  9. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Tauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716-3724 (1983).
  10. P. Piironen and E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234-236 (1994).
  11. C. J. Grund and E. W. Eloranta, “University of Wisconsin high spectral resolution lidar,” Opt. Eng. 30, 6-12 (1991).
    [CrossRef]
  12. C. Y. She, R. J. Alvarez II, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541-543(1992).
  13. D. A. Krueger, L. M. Caldwell, R. J. Alvarez II, and C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh-Mie lidar,” J. Atmos. Ocean. Technol. 10, 533-545 (1993).
    [CrossRef]
  14. R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Oceanic Technol. 7, 876-881 (1990).
    [CrossRef]
  15. J. W. Hair, L. M. Caldwell, D. A. Krueger, and C.-Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280-5294 (2001).
    [CrossRef]
  16. Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661-1670 (1999).
    [CrossRef]
  17. J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, and P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis,” Appl. Opt. 22, 3725-3732 (1983).
  18. U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125, doi:10.1029/2000JD000202 (2002).
    [CrossRef]
  19. M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346-358 (2008).
    [CrossRef]
  20. G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285-290 (1974).
  21. A. T. Young, “Rayleigh scattering,” Phys. Today 35, 42-48 (1982).
    [CrossRef]
  22. C.-Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875-4884 (2001).
    [CrossRef]
  23. P. B. Russell, T. J. Swissler, and M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783-3797 (1979).
  24. A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746-748 (1990).
  25. F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263-270 (2004).
    [CrossRef]
  26. J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering--a laser based flow diagnostic for planar measurement of velocity, temperature and pressure,” Ph.D. dissertation (Princeton University, 1996).
  27. J. N. Forkey, W. R. Lempert, and R. B. Miles, “Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths,” Appl. Opt. 36, 6729-6738 (1997).
    [CrossRef]
  28. S. W. Henderson, E. H. Yuen, and E. S. Fry, “Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers,” Opt. Lett. 11, 715-717 (1986).
  29. M. P. Larsen, E. Thomas, T. Walther, and E. S. Fry, “Injection seeding of a Ti:sapphire laser using a ramp-hold-fire technique,” in Conference on Lasers and Electro-Optics (Optical Society of America, 1997), pp. 3046-3050.
  30. T. Walther, M. P. Larsen, and E. S. Fry, “Generation of Fourier-transform-limited 35 ns pulses with a ramp-hold-fire seeding technique in a Ti:sapphire laser,” Appl. Opt. 40, 3046-3050(2001).
    [CrossRef]
  31. E. S. Fry, Q. Hu, and X. Li, “Single frequency operation of an injection-seeded Nd:YAG laser in high noise and vibration environments,” Appl. Opt. 30, 1015-1017 (1991).
  32. A. Arie and R. L. Byer, “Frequency stabilization of the 1064 nm Nd:YAG lasers to Doppler-broadened lines of iodine,” Appl. Opt. 32, 7382-7386 (1993).
  33. A. Arie, S. Schiller, E. K. Gustafson, and R. L. Byer, “Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine,” Opt. Lett. 17, 1204-1206 (1992).
  34. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15-17 (1980).
  35. J. Crafton, C. D. Carter, and G. S. Elliott, “Three-component phase-averaged velocity measurements of an optically perturbed supersonic jet using multi-component planar Doppler velocimetry,” Meas. Sci. Technol. 12, 409-419 (2001).
    [CrossRef]
  36. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765-2773 (1995).
  37. U. Wandinger and A. Ansmann, “Experimental Determination of the Lidar Overlap Profile with Raman Lidar,” Appl. Opt. 41, 511-514 (2002).
    [CrossRef]
  38. P. B. Russell, T. J. Swissler, and M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783-3797 (1979).
  39. C. Cattrall, J. A. Reagan, K. Thome, and O. Dubovik, “Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations,” J. Geophys. Res. 110, D10S11 (2005), doi: 10.1029/2004JD005124.
    [CrossRef]
  40. Y. Sasano and E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt. 28, 1670-1679 (1989).
  41. F. Cairo, G. Di Donfrancesco, A. Adriani, L. Pulvirenti, and F. Fierli, “Comparison of various linear depolarization parameters measured by lidar,” Appl. Opt. 38, 4425-4432 (1999).
    [CrossRef]
  42. T. J. Quinn and J.-M. Chartier, “A new type of iodine cell for stabilized lasers,” IEEE Trans. Instrum. Meas. 42, 405-406(1993).
    [CrossRef]
  43. J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Oceanic Technol. 23, 683-699 (2006).
    [CrossRef]
  44. Z. Liu, W. Hunt, M. Vaughan, C. Hostetler, M. McGill, K. Powell, D. Winker, and Y. Hu, “Estimating random errors due to shot noise in backscatter lidar observations,” Appl. Opt. 45, 4437-4447 (2006).
    [CrossRef]
  45. R. R. Rogers, J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, D. B. Harper, M. D. Obland, S. P. Burton, A. Clarke, Y. Shinozuka, J. Redemann, P. Russell, and J. Livingston, “Evaluation of NASA/LaRC airborne High Spectral Resolution Lidar aerosol extinction measurements,” in Proceedings of the 24th International Laser Radar Conference (ILRC, 2008), pp. 940-942.

2008 (1)

2007 (1)

D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. 112, D16202 (2007), doi:10.1029/2006JD008292..
[CrossRef]

2006 (2)

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Oceanic Technol. 23, 683-699 (2006).
[CrossRef]

Z. Liu, W. Hunt, M. Vaughan, C. Hostetler, M. McGill, K. Powell, D. Winker, and Y. Hu, “Estimating random errors due to shot noise in backscatter lidar observations,” Appl. Opt. 45, 4437-4447 (2006).
[CrossRef]

2005 (1)

C. Cattrall, J. A. Reagan, K. Thome, and O. Dubovik, “Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations,” J. Geophys. Res. 110, D10S11 (2005), doi: 10.1029/2004JD005124.
[CrossRef]

2004 (1)

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263-270 (2004).
[CrossRef]

2002 (3)

U. Wandinger and A. Ansmann, “Experimental Determination of the Lidar Overlap Profile with Raman Lidar,” Appl. Opt. 41, 511-514 (2002).
[CrossRef]

Z. Liu, N. Sugimoto, and T. Murayama, “Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar,” Appl. Opt. 41, 2760-2767 (2002).
[CrossRef]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125, doi:10.1029/2000JD000202 (2002).
[CrossRef]

2001 (4)

1999 (2)

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661-1670 (1999).
[CrossRef]

F. Cairo, G. Di Donfrancesco, A. Adriani, L. Pulvirenti, and F. Fierli, “Comparison of various linear depolarization parameters measured by lidar,” Appl. Opt. 38, 4425-4432 (1999).
[CrossRef]

1997 (1)

1995 (1)

1994 (1)

1993 (3)

D. A. Krueger, L. M. Caldwell, R. J. Alvarez II, and C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh-Mie lidar,” J. Atmos. Ocean. Technol. 10, 533-545 (1993).
[CrossRef]

A. Arie and R. L. Byer, “Frequency stabilization of the 1064 nm Nd:YAG lasers to Doppler-broadened lines of iodine,” Appl. Opt. 32, 7382-7386 (1993).

T. J. Quinn and J.-M. Chartier, “A new type of iodine cell for stabilized lasers,” IEEE Trans. Instrum. Meas. 42, 405-406(1993).
[CrossRef]

1992 (2)

1991 (2)

1990 (2)

A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746-748 (1990).

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Oceanic Technol. 7, 876-881 (1990).
[CrossRef]

1989 (1)

1986 (1)

1985 (1)

1983 (2)

1982 (1)

A. T. Young, “Rayleigh scattering,” Phys. Today 35, 42-48 (1982).
[CrossRef]

1981 (1)

1980 (1)

1979 (2)

1974 (1)

G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285-290 (1974).

1972 (1)

F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482-489 (1972).
[CrossRef]

Adriani, A.

Althausen, D.

D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. 112, D16202 (2007), doi:10.1029/2006JD008292..
[CrossRef]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125, doi:10.1029/2000JD000202 (2002).
[CrossRef]

Alvarez, J. M.

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Oceanic Technol. 23, 683-699 (2006).
[CrossRef]

Alvarez, R. J.

D. A. Krueger, L. M. Caldwell, R. J. Alvarez II, and C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh-Mie lidar,” J. Atmos. Ocean. Technol. 10, 533-545 (1993).
[CrossRef]

C. Y. She, R. J. Alvarez II, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541-543(1992).

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Oceanic Technol. 7, 876-881 (1990).
[CrossRef]

Ansmann, A.

D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. 112, D16202 (2007), doi:10.1029/2006JD008292..
[CrossRef]

U. Wandinger and A. Ansmann, “Experimental Determination of the Lidar Overlap Profile with Raman Lidar,” Appl. Opt. 41, 511-514 (2002).
[CrossRef]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125, doi:10.1029/2000JD000202 (2002).
[CrossRef]

A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746-748 (1990).

Arie, A.

Bjorklund, G. C.

Böckmann, C.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125, doi:10.1029/2000JD000202 (2002).
[CrossRef]

Boley, C. D.

G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285-290 (1974).

Bösenberg, J.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125, doi:10.1029/2000JD000202 (2002).
[CrossRef]

Browell, E. V.

Bucholtz, A.

Burnham, R. L.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263-270 (2004).
[CrossRef]

Burton, S. P.

R. R. Rogers, J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, D. B. Harper, M. D. Obland, S. P. Burton, A. Clarke, Y. Shinozuka, J. Redemann, P. Russell, and J. Livingston, “Evaluation of NASA/LaRC airborne High Spectral Resolution Lidar aerosol extinction measurements,” in Proceedings of the 24th International Laser Radar Conference (ILRC, 2008), pp. 940-942.

Byer, R. L.

Cairo, F.

Caldwell, L. M.

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C.-Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280-5294 (2001).
[CrossRef]

D. A. Krueger, L. M. Caldwell, R. J. Alvarez II, and C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh-Mie lidar,” J. Atmos. Ocean. Technol. 10, 533-545 (1993).
[CrossRef]

C. Y. She, R. J. Alvarez II, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541-543(1992).

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Oceanic Technol. 7, 876-881 (1990).
[CrossRef]

Carter, C. D.

J. Crafton, C. D. Carter, and G. S. Elliott, “Three-component phase-averaged velocity measurements of an optically perturbed supersonic jet using multi-component planar Doppler velocimetry,” Meas. Sci. Technol. 12, 409-419 (2001).
[CrossRef]

Cattrall, C.

C. Cattrall, J. A. Reagan, K. Thome, and O. Dubovik, “Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations,” J. Geophys. Res. 110, D10S11 (2005), doi: 10.1029/2004JD005124.
[CrossRef]

Chartier, J.-M.

T. J. Quinn and J.-M. Chartier, “A new type of iodine cell for stabilized lasers,” IEEE Trans. Instrum. Meas. 42, 405-406(1993).
[CrossRef]

Chen, H.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263-270 (2004).
[CrossRef]

Clarke, A.

R. R. Rogers, J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, D. B. Harper, M. D. Obland, S. P. Burton, A. Clarke, Y. Shinozuka, J. Redemann, P. Russell, and J. Livingston, “Evaluation of NASA/LaRC airborne High Spectral Resolution Lidar aerosol extinction measurements,” in Proceedings of the 24th International Laser Radar Conference (ILRC, 2008), pp. 940-942.

Cook, A.

D. B. Harper, A. Cook, C. Hostetler, J. W. Hair, and T. L. Mack, “NASA Langley airborne High Spectral Resolution Lidar instrument description,” in Proceedings of 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (ILRC, 2006), p. PD1-5.

Cook, A. L.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263-270 (2004).
[CrossRef]

J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, and D. B. Harper, “The NASA Langley Airborne High Spectral Resolution Lidar for Measurements of Aerosols and Clouds,” in Proceedings of 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (ILRC, 2006), pp. 411-414.

R. R. Rogers, J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, D. B. Harper, M. D. Obland, S. P. Burton, A. Clarke, Y. Shinozuka, J. Redemann, P. Russell, and J. Livingston, “Evaluation of NASA/LaRC airborne High Spectral Resolution Lidar aerosol extinction measurements,” in Proceedings of the 24th International Laser Radar Conference (ILRC, 2008), pp. 940-942.

Crafton, J.

J. Crafton, C. D. Carter, and G. S. Elliott, “Three-component phase-averaged velocity measurements of an optically perturbed supersonic jet using multi-component planar Doppler velocimetry,” Meas. Sci. Technol. 12, 409-419 (2001).
[CrossRef]

Desai, R. C.

G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285-290 (1974).

Donfrancesco, G. Di

Dubovik, O.

C. Cattrall, J. A. Reagan, K. Thome, and O. Dubovik, “Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations,” J. Geophys. Res. 110, D10S11 (2005), doi: 10.1029/2004JD005124.
[CrossRef]

Ehret, G.

Elliott, G. S.

J. Crafton, C. D. Carter, and G. S. Elliott, “Three-component phase-averaged velocity measurements of an optically perturbed supersonic jet using multi-component planar Doppler velocimetry,” Meas. Sci. Technol. 12, 409-419 (2001).
[CrossRef]

Eloranta, E. W.

Esselborn, M.

Fernald, F. G.

F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482-489 (1972).
[CrossRef]

Ferrare, R. A.

J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, and D. B. Harper, “The NASA Langley Airborne High Spectral Resolution Lidar for Measurements of Aerosols and Clouds,” in Proceedings of 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (ILRC, 2006), pp. 411-414.

R. R. Rogers, J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, D. B. Harper, M. D. Obland, S. P. Burton, A. Clarke, Y. Shinozuka, J. Redemann, P. Russell, and J. Livingston, “Evaluation of NASA/LaRC airborne High Spectral Resolution Lidar aerosol extinction measurements,” in Proceedings of the 24th International Laser Radar Conference (ILRC, 2008), pp. 940-942.

Fiebig, M.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125, doi:10.1029/2000JD000202 (2002).
[CrossRef]

Fierli, F.

Fix, A.

Force, J. D.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263-270 (2004).
[CrossRef]

Forkey, J. N.

J. N. Forkey, W. R. Lempert, and R. B. Miles, “Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths,” Appl. Opt. 36, 6729-6738 (1997).
[CrossRef]

J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering--a laser based flow diagnostic for planar measurement of velocity, temperature and pressure,” Ph.D. dissertation (Princeton University, 1996).

Fry, E. S.

Gentry, B. M.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263-270 (2004).
[CrossRef]

Grund, C. J.

C. J. Grund and E. W. Eloranta, “University of Wisconsin high spectral resolution lidar,” Opt. Eng. 30, 6-12 (1991).
[CrossRef]

Gustafson, E. K.

Hair, J. W.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263-270 (2004).
[CrossRef]

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C.-Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280-5294 (2001).
[CrossRef]

J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, and D. B. Harper, “The NASA Langley Airborne High Spectral Resolution Lidar for Measurements of Aerosols and Clouds,” in Proceedings of 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (ILRC, 2006), pp. 411-414.

D. B. Harper, A. Cook, C. Hostetler, J. W. Hair, and T. L. Mack, “NASA Langley airborne High Spectral Resolution Lidar instrument description,” in Proceedings of 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (ILRC, 2006), p. PD1-5.

R. R. Rogers, J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, D. B. Harper, M. D. Obland, S. P. Burton, A. Clarke, Y. Shinozuka, J. Redemann, P. Russell, and J. Livingston, “Evaluation of NASA/LaRC airborne High Spectral Resolution Lidar aerosol extinction measurements,” in Proceedings of the 24th International Laser Radar Conference (ILRC, 2008), pp. 940-942.

Harper, D. B.

R. R. Rogers, J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, D. B. Harper, M. D. Obland, S. P. Burton, A. Clarke, Y. Shinozuka, J. Redemann, P. Russell, and J. Livingston, “Evaluation of NASA/LaRC airborne High Spectral Resolution Lidar aerosol extinction measurements,” in Proceedings of the 24th International Laser Radar Conference (ILRC, 2008), pp. 940-942.

D. B. Harper, A. Cook, C. Hostetler, J. W. Hair, and T. L. Mack, “NASA Langley airborne High Spectral Resolution Lidar instrument description,” in Proceedings of 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (ILRC, 2006), p. PD1-5.

J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, and D. B. Harper, “The NASA Langley Airborne High Spectral Resolution Lidar for Measurements of Aerosols and Clouds,” in Proceedings of 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (ILRC, 2006), pp. 411-414.

Henderson, S. W.

Herman, B. M.

F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482-489 (1972).
[CrossRef]

Hostetler, C.

Z. Liu, W. Hunt, M. Vaughan, C. Hostetler, M. McGill, K. Powell, D. Winker, and Y. Hu, “Estimating random errors due to shot noise in backscatter lidar observations,” Appl. Opt. 45, 4437-4447 (2006).
[CrossRef]

D. B. Harper, A. Cook, C. Hostetler, J. W. Hair, and T. L. Mack, “NASA Langley airborne High Spectral Resolution Lidar instrument description,” in Proceedings of 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (ILRC, 2006), p. PD1-5.

Hostetler, C. A.

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Oceanic Technol. 23, 683-699 (2006).
[CrossRef]

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263-270 (2004).
[CrossRef]

J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, and D. B. Harper, “The NASA Langley Airborne High Spectral Resolution Lidar for Measurements of Aerosols and Clouds,” in Proceedings of 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (ILRC, 2006), pp. 411-414.

R. R. Rogers, J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, D. B. Harper, M. D. Obland, S. P. Burton, A. Clarke, Y. Shinozuka, J. Redemann, P. Russell, and J. Livingston, “Evaluation of NASA/LaRC airborne High Spectral Resolution Lidar aerosol extinction measurements,” in Proceedings of the 24th International Laser Radar Conference (ILRC, 2008), pp. 940-942.

Hovis, F. E.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263-270 (2004).
[CrossRef]

Hu, Q.

Hu, Y.

Hunt, W.

Hunt, W. H.

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Oceanic Technol. 23, 683-699 (2006).
[CrossRef]

Klett, J. D.

Krueger, D. A.

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C.-Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280-5294 (2001).
[CrossRef]

D. A. Krueger, L. M. Caldwell, R. J. Alvarez II, and C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh-Mie lidar,” J. Atmos. Ocean. Technol. 10, 533-545 (1993).
[CrossRef]

C. Y. She, R. J. Alvarez II, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541-543(1992).

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Oceanic Technol. 7, 876-881 (1990).
[CrossRef]

Larsen, M. P.

T. Walther, M. P. Larsen, and E. S. Fry, “Generation of Fourier-transform-limited 35 ns pulses with a ramp-hold-fire seeding technique in a Ti:sapphire laser,” Appl. Opt. 40, 3046-3050(2001).
[CrossRef]

M. P. Larsen, E. Thomas, T. Walther, and E. S. Fry, “Injection seeding of a Ti:sapphire laser using a ramp-hold-fire technique,” in Conference on Lasers and Electro-Optics (Optical Society of America, 1997), pp. 3046-3050.

Lempert, W. R.

Li, S. X.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263-270 (2004).
[CrossRef]

Li, X.

Li, Y. H.

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Oceanic Technol. 7, 876-881 (1990).
[CrossRef]

Liu, Z.

Livingston, J.

R. R. Rogers, J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, D. B. Harper, M. D. Obland, S. P. Burton, A. Clarke, Y. Shinozuka, J. Redemann, P. Russell, and J. Livingston, “Evaluation of NASA/LaRC airborne High Spectral Resolution Lidar aerosol extinction measurements,” in Proceedings of the 24th International Laser Radar Conference (ILRC, 2008), pp. 940-942.

Mack, T. L.

D. B. Harper, A. Cook, C. Hostetler, J. W. Hair, and T. L. Mack, “NASA Langley airborne High Spectral Resolution Lidar instrument description,” in Proceedings of 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (ILRC, 2006), p. PD1-5.

Matsui, I.

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661-1670 (1999).
[CrossRef]

Matthias, V.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125, doi:10.1029/2000JD000202 (2002).
[CrossRef]

Mattis, I.

D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. 112, D16202 (2007), doi:10.1029/2006JD008292..
[CrossRef]

McCormick, M. P.

McGill, M.

Miles, R. B.

Müller, D.

D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. 112, D16202 (2007), doi:10.1029/2006JD008292..
[CrossRef]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125, doi:10.1029/2000JD000202 (2002).
[CrossRef]

Murayama, T.

Obland, M. D.

R. R. Rogers, J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, D. B. Harper, M. D. Obland, S. P. Burton, A. Clarke, Y. Shinozuka, J. Redemann, P. Russell, and J. Livingston, “Evaluation of NASA/LaRC airborne High Spectral Resolution Lidar aerosol extinction measurements,” in Proceedings of the 24th International Laser Radar Conference (ILRC, 2008), pp. 940-942.

Piironen, P.

Pisani, G.

D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. 112, D16202 (2007), doi:10.1029/2006JD008292..
[CrossRef]

Powell, K.

Pulvirenti, L.

Quinn, T. J.

T. J. Quinn and J.-M. Chartier, “A new type of iodine cell for stabilized lasers,” IEEE Trans. Instrum. Meas. 42, 405-406(1993).
[CrossRef]

Reagan, J. A.

C. Cattrall, J. A. Reagan, K. Thome, and O. Dubovik, “Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations,” J. Geophys. Res. 110, D10S11 (2005), doi: 10.1029/2004JD005124.
[CrossRef]

F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482-489 (1972).
[CrossRef]

Redemann, J.

R. R. Rogers, J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, D. B. Harper, M. D. Obland, S. P. Burton, A. Clarke, Y. Shinozuka, J. Redemann, P. Russell, and J. Livingston, “Evaluation of NASA/LaRC airborne High Spectral Resolution Lidar aerosol extinction measurements,” in Proceedings of the 24th International Laser Radar Conference (ILRC, 2008), pp. 940-942.

Rhoades, M.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263-270 (2004).
[CrossRef]

Riebesell, M.

Roesler, F. L.

Rogers, R. R.

R. R. Rogers, J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, D. B. Harper, M. D. Obland, S. P. Burton, A. Clarke, Y. Shinozuka, J. Redemann, P. Russell, and J. Livingston, “Evaluation of NASA/LaRC airborne High Spectral Resolution Lidar aerosol extinction measurements,” in Proceedings of the 24th International Laser Radar Conference (ILRC, 2008), pp. 940-942.

Russell, P.

R. R. Rogers, J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, D. B. Harper, M. D. Obland, S. P. Burton, A. Clarke, Y. Shinozuka, J. Redemann, P. Russell, and J. Livingston, “Evaluation of NASA/LaRC airborne High Spectral Resolution Lidar aerosol extinction measurements,” in Proceedings of the 24th International Laser Radar Conference (ILRC, 2008), pp. 940-942.

Russell, P. B.

Sasano, Y.

Schiller, S.

Schum, T.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263-270 (2004).
[CrossRef]

She, C. Y.

D. A. Krueger, L. M. Caldwell, R. J. Alvarez II, and C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh-Mie lidar,” J. Atmos. Ocean. Technol. 10, 533-545 (1993).
[CrossRef]

C. Y. She, R. J. Alvarez II, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541-543(1992).

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Oceanic Technol. 7, 876-881 (1990).
[CrossRef]

She, C.-Y.

Shinozuka, Y.

R. R. Rogers, J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, D. B. Harper, M. D. Obland, S. P. Burton, A. Clarke, Y. Shinozuka, J. Redemann, P. Russell, and J. Livingston, “Evaluation of NASA/LaRC airborne High Spectral Resolution Lidar aerosol extinction measurements,” in Proceedings of the 24th International Laser Radar Conference (ILRC, 2008), pp. 940-942.

Shipley, S. T.

Sroga, J. T.

Stohl, A.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125, doi:10.1029/2000JD000202 (2002).
[CrossRef]

Sugimoto, N.

Z. Liu, N. Sugimoto, and T. Murayama, “Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar,” Appl. Opt. 41, 2760-2767 (2002).
[CrossRef]

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661-1670 (1999).
[CrossRef]

Swissler, T. J.

Tauger, J. T.

Tenti, G.

G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285-290 (1974).

Tesche, M.

M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346-358 (2008).
[CrossRef]

D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. 112, D16202 (2007), doi:10.1029/2006JD008292..
[CrossRef]

Thomas, E.

M. P. Larsen, E. Thomas, T. Walther, and E. S. Fry, “Injection seeding of a Ti:sapphire laser using a ramp-hold-fire technique,” in Conference on Lasers and Electro-Optics (Optical Society of America, 1997), pp. 3046-3050.

Thome, K.

C. Cattrall, J. A. Reagan, K. Thome, and O. Dubovik, “Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations,” J. Geophys. Res. 110, D10S11 (2005), doi: 10.1029/2004JD005124.
[CrossRef]

Tracy, D. H.

Tryon, P. J.

Vaughan, M.

Vaughan, M. A.

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Oceanic Technol. 23, 683-699 (2006).
[CrossRef]

Walther, T.

T. Walther, M. P. Larsen, and E. S. Fry, “Generation of Fourier-transform-limited 35 ns pulses with a ramp-hold-fire seeding technique in a Ti:sapphire laser,” Appl. Opt. 40, 3046-3050(2001).
[CrossRef]

M. P. Larsen, E. Thomas, T. Walther, and E. S. Fry, “Injection seeding of a Ti:sapphire laser using a ramp-hold-fire technique,” in Conference on Lasers and Electro-Optics (Optical Society of America, 1997), pp. 3046-3050.

Wandinger, U.

D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. 112, D16202 (2007), doi:10.1029/2006JD008292..
[CrossRef]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125, doi:10.1029/2000JD000202 (2002).
[CrossRef]

U. Wandinger and A. Ansmann, “Experimental Determination of the Lidar Overlap Profile with Raman Lidar,” Appl. Opt. 41, 511-514 (2002).
[CrossRef]

Weinman, J. A.

Weiss, V.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125, doi:10.1029/2000JD000202 (2002).
[CrossRef]

Weitkamp, C.

Wendisch, M.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125, doi:10.1029/2000JD000202 (2002).
[CrossRef]

Winker, D.

Winker, D. M.

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Oceanic Technol. 23, 683-699 (2006).
[CrossRef]

Wirth, M.

Young, A. T.

A. T. Young, “Rayleigh scattering,” Phys. Today 35, 42-48 (1982).
[CrossRef]

Yuen, E. H.

Appl. Opt. (19)

J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211-220 (1981).

J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638-1643 (1985).

Z. Liu, N. Sugimoto, and T. Murayama, “Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar,” Appl. Opt. 41, 2760-2767 (2002).
[CrossRef]

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Tauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716-3724 (1983).

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C.-Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280-5294 (2001).
[CrossRef]

J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, and P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis,” Appl. Opt. 22, 3725-3732 (1983).

C.-Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875-4884 (2001).
[CrossRef]

P. B. Russell, T. J. Swissler, and M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783-3797 (1979).

M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346-358 (2008).
[CrossRef]

J. N. Forkey, W. R. Lempert, and R. B. Miles, “Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths,” Appl. Opt. 36, 6729-6738 (1997).
[CrossRef]

T. Walther, M. P. Larsen, and E. S. Fry, “Generation of Fourier-transform-limited 35 ns pulses with a ramp-hold-fire seeding technique in a Ti:sapphire laser,” Appl. Opt. 40, 3046-3050(2001).
[CrossRef]

E. S. Fry, Q. Hu, and X. Li, “Single frequency operation of an injection-seeded Nd:YAG laser in high noise and vibration environments,” Appl. Opt. 30, 1015-1017 (1991).

A. Arie and R. L. Byer, “Frequency stabilization of the 1064 nm Nd:YAG lasers to Doppler-broadened lines of iodine,” Appl. Opt. 32, 7382-7386 (1993).

A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765-2773 (1995).

U. Wandinger and A. Ansmann, “Experimental Determination of the Lidar Overlap Profile with Raman Lidar,” Appl. Opt. 41, 511-514 (2002).
[CrossRef]

P. B. Russell, T. J. Swissler, and M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783-3797 (1979).

Y. Sasano and E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt. 28, 1670-1679 (1989).

F. Cairo, G. Di Donfrancesco, A. Adriani, L. Pulvirenti, and F. Fierli, “Comparison of various linear depolarization parameters measured by lidar,” Appl. Opt. 38, 4425-4432 (1999).
[CrossRef]

Z. Liu, W. Hunt, M. Vaughan, C. Hostetler, M. McGill, K. Powell, D. Winker, and Y. Hu, “Estimating random errors due to shot noise in backscatter lidar observations,” Appl. Opt. 45, 4437-4447 (2006).
[CrossRef]

Can. J. Phys. (1)

G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285-290 (1974).

IEEE Trans. Instrum. Meas. (1)

T. J. Quinn and J.-M. Chartier, “A new type of iodine cell for stabilized lasers,” IEEE Trans. Instrum. Meas. 42, 405-406(1993).
[CrossRef]

J. Appl. Meteorol. (1)

F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482-489 (1972).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

D. A. Krueger, L. M. Caldwell, R. J. Alvarez II, and C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh-Mie lidar,” J. Atmos. Ocean. Technol. 10, 533-545 (1993).
[CrossRef]

J. Atmos. Oceanic Technol. (2)

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Oceanic Technol. 7, 876-881 (1990).
[CrossRef]

J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Oceanic Technol. 23, 683-699 (2006).
[CrossRef]

J. Geophys. Res. (3)

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125, doi:10.1029/2000JD000202 (2002).
[CrossRef]

D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. 112, D16202 (2007), doi:10.1029/2006JD008292..
[CrossRef]

C. Cattrall, J. A. Reagan, K. Thome, and O. Dubovik, “Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations,” J. Geophys. Res. 110, D10S11 (2005), doi: 10.1029/2004JD005124.
[CrossRef]

Meas. Sci. Technol. (1)

J. Crafton, C. D. Carter, and G. S. Elliott, “Three-component phase-averaged velocity measurements of an optically perturbed supersonic jet using multi-component planar Doppler velocimetry,” Meas. Sci. Technol. 12, 409-419 (2001).
[CrossRef]

Opt. Eng. (2)

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661-1670 (1999).
[CrossRef]

C. J. Grund and E. W. Eloranta, “University of Wisconsin high spectral resolution lidar,” Opt. Eng. 30, 6-12 (1991).
[CrossRef]

Opt. Lett. (6)

Phys. Today (1)

A. T. Young, “Rayleigh scattering,” Phys. Today 35, 42-48 (1982).
[CrossRef]

Proc. SPIE (1)

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263-270 (2004).
[CrossRef]

Other (6)

J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering--a laser based flow diagnostic for planar measurement of velocity, temperature and pressure,” Ph.D. dissertation (Princeton University, 1996).

M. P. Larsen, E. Thomas, T. Walther, and E. S. Fry, “Injection seeding of a Ti:sapphire laser using a ramp-hold-fire technique,” in Conference on Lasers and Electro-Optics (Optical Society of America, 1997), pp. 3046-3050.

Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the IPCC, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds. (Cambridge University, 2007), pp. 996.

D. B. Harper, A. Cook, C. Hostetler, J. W. Hair, and T. L. Mack, “NASA Langley airborne High Spectral Resolution Lidar instrument description,” in Proceedings of 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (ILRC, 2006), p. PD1-5.

J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, and D. B. Harper, “The NASA Langley Airborne High Spectral Resolution Lidar for Measurements of Aerosols and Clouds,” in Proceedings of 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (ILRC, 2006), pp. 411-414.

R. R. Rogers, J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, D. B. Harper, M. D. Obland, S. P. Burton, A. Clarke, Y. Shinozuka, J. Redemann, P. Russell, and J. Livingston, “Evaluation of NASA/LaRC airborne High Spectral Resolution Lidar aerosol extinction measurements,” in Proceedings of the 24th International Laser Radar Conference (ILRC, 2008), pp. 940-942.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram for a HSRL return spectra.

Fig. 2
Fig. 2

Instrument model and overall dimensions ( 76 cm × 48 cm × 86 cm ) showing the main components of the Airborne HSRL instrument; the laser transmitter, telescope, and the transmit optics. The electronics rack ( 106 cm ) which contains the PXI data acquisition computer, seed laser, all detectors, iodine cells for filtering and monitoring spectral purity, and power supplies for the lasers is shown in the photo behind the main system.

Fig. 3
Fig. 3

Basic layout of the HSRL showing the optical and electronic subsystems.

Fig. 4
Fig. 4

Schematic of the transmit beam optical layout. The Glan laser polarizer ensures linear polarization output. The output polarization for both wavelengths can be set relative to the receiver with the last half-wave plate before transmission in to the atmosphere. A fiber pickoff is shown for the energy and spectral purity monitor which are housed in a separate module.

Fig. 5
Fig. 5

Pulsed laser spectral lineshape measured at 1064 nm . The frequency scale is referenced to the center of the best fit of a Gaussian distribution lineshape shown as a dashed line. The full width at half-maximum of the Gaussian fit is 38 MHz .

Fig. 6
Fig. 6

Diagram providing the basic layout for the seed laser with dual-wavelength outputs. The 532 and 1064 nm output optical paths for the energy monitor, laser line locking to an iodine cell, and filter scan output are shown. There are two outputs for the 1064 nm laser light. Approximately 98% is directly coupled with a PM fiber to the pulsed laser used for seeding. The 1% output is used for diagnostics and as a frequency marker for the iodine filter scans using a 300 MHz confocal interferometer.

Fig. 7
Fig. 7

(a) Measured transmission function of the main science channel iodine vapor filter using the 532 nm output from the seed laser is shown as the solid thin line. The Cabannes–Brillouin backscattered signal spectra ( 275 K , 0.75 atm. ) with Mie scattering included is plotted as the dashed line. The filtered transmitted backscattered spectrum is shown as the solid thick line. (b) Thin solid line, measured transmission function of the main science channel iodine vapor filter. The measured filter transmission function of the iodine locking cell is shown as a solid thick line, and the error signal from the locking circuit is shown for reference as the dashed line.

Fig. 8
Fig. 8

Schematic showing the receiver optics connected to the output of the telescope. There are three different receiver legs consisting of the 1064 nm channels, 532 nm channels, and the quad-fiber boresighting channels. All output channels are fiber-coupled to the detectors and iodine vapor filter for the 532 nm molecular backscatter channel.

Fig. 9
Fig. 9

Detector modules that incorporate fiber-coupled inputs and 5%–95% optical splits for high signal and low signal detectors.

Fig. 10
Fig. 10

Block diagram of the iodine vapor filter and the optical layout to provide periodic measurements of the filter transmission. The science channel input and the input to measure transmission spectra are both fiber-coupled.

Fig. 11
Fig. 11

Flight track over the Mexico City basin for sortie flown on 7 March 2006 based from Veracruz, Mexico. The flight track is color coded with the aerosol optical depth ( 532 nm ) measured with the Airborne HSRL instrument and the time stamp (UT) is denoted along the track. The T1–T2 markers denote the ground-based sites near the Mexico City metropolitan area that were operational during the field deployment.

Fig. 12
Fig. 12

Flight summary plot of the HSRL aerosol backscattered data taken on 7 March 2006 centered on the Mexico City basin. The particular flight leg shown in Fig. 13 is highlighted.

Fig. 13
Fig. 13

Flight leg depicted in Fig. 12 showing all of the measurement parameters measured with the HSRL instrument as a function of altitude above mean sea level. The backscatter coefficient, depolarization ratios, and wavelength dependence have 60 m vertical and 1 km horizontal resolution. The extinction coefficient and extinction-to-backscatter ratio are averaged to a 300 m vertical and 6 km horizontal resolution.

Fig. 14
Fig. 14

HSRL measurement profiles plotted above mean seal level at 19:09 UT on 7 March 2006. The minimum altitude plotted, 2.27 km , is set at the ground level for this location. Error bars on all plot represents the shot noise 1 σ standard deviations for the same average resolutions as Fig. 13.

Tables (4)

Tables Icon

Table 1 Basic Operational Parameters for the Pulsed and Seed Lasers

Tables Icon

Table 2 Receiver Optical Specifications and Measured Optical Efficiencies

Tables Icon

Table 3 Iodine Vapor Filter Transmission Data Showing Long-Term Stability.

Tables Icon

Table 4 Errors Due to Shot Noise for Data Presented in Fig. 14 at 3 km Altitude a

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

P i 2 = C i 2 r 2 F β m T 2 Ψ , P tot = C tot ( β m + β a ) r 2 T 2 Ψ , P tot = C tot ( β m + β a ) r 2 T 2 Ψ ,
P tot = C tot ( β m + β a ) r 2 T 2 Ψ , P tot = C tot ( β m + β a ) r 2 T 2 Ψ ,
β m β m + β m , β a β a + β a .
β a = β m [ 1 ( 1 + δ m ) F G i 2 ( P tot P i 2 + P tot G dep P i 2 ) 1 ] ,
G i 2 C tot C i 2 , G dep C tot C tot ,
δ m β m β m .
α a = 1 2 r ln ( P i 2 r 2 Ψ F β m ) α m ,
α m = N σ .
S a = α a β a .
β a = X 0 ( r ) X ( r c ) ( β m ( r c ) + β a ( r c ) ) 2 S a [ r c r X 0 ( r ) ] β m ,
X ( P tot + P tot / G dep ) r 2 = ( β m + β a ) T 2 C tot ,
X 0 ( r ) X ( r ) exp [ 2 ( S a S m ) r c r β m ( r ) d r ] .
WVD = ln ( β a ( 1064 nm ) β a ( 532 nm ) ) ln ( 2 ) .
δ ( β m + β a ) ( β m + β a ) , δ = P tot P tot 1 G dep .
δ a β a β a = R δ ( δ m + 1 ) δ m ( δ + 1 ) R ( δ m + 1 ) ( δ + 1 ) ,
R β m + β a β m .

Metrics