Abstract

An extension to the Fabry–Perot interferometric method is demonstrated to calculate the optical loss and the reflectivity for optical waveguides simultaneously. The method uses an excitation of the waveguide with a broadband amplified spontaneous emission source (a superluminescent diode in our case) and curve fitting to account for the change of input power, thereby simplifying the measurement procedure. The use of a broadband source as opposed to tunable lasers allows for simultaneous measurements over multiple wavelengths and decreased sensitivity to reflections in the cavity. Further, waveguides of different lengths are measured to calculate the optical loss and the reflectivity simultaneously. It is shown that, if the value for reflectivity is assumed, there could be a large error in the measurement of loss especially for short waveguides. Optical loss for ridge waveguides is measured and compared by using a tunable laser as the input source. The method can be used for a generic case where it is suspected that the input power changes during the measurement.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Okamura, S. Yoshinaka, and S. Yamamoto, “Measuring mode propagation losses of integrated optical waveguides: a simple method,” Appl. Opt. 22, 3892-3894 (1983).
    [CrossRef] [PubMed]
  2. H. P. Weber, F. A. Dunn, and W. N. Leibolt, “Loss measurements in thin-film optical waveguides,” Appl. Opt. 12, 755-757 (1973).
    [CrossRef] [PubMed]
  3. Y. H. Won, P. C. Jaussaud, and G. H. Chartier, “Three-prism loss measurements of optical waveguides,” Appl. Phys. Lett. 37, 269-271 (1980).
    [CrossRef]
  4. M. D. Himel and U. J. Gibson, “Measurement of planar waveguide losses using a coherent fiber bundle,” Appl. Opt. 25, 4413-4416 (1986).
    [CrossRef] [PubMed]
  5. G. Titterlbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2, 683-700(1993).
    [CrossRef]
  6. I. P. Kaminow and L. W. Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33, 62-64 (1978).
    [CrossRef]
  7. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143-147(1985).
    [CrossRef]
  8. L. S. Yu, Q. Z. Liu, S. A. Pappert, P. K. L. Yu, and S. S. Lau, “Laser spectral linewidth dependence on waveguide loss measurements using the Fabry-Perot method,” Appl. Phys. Lett. 64, 536-538 (1994).
    [CrossRef]
  9. A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105(2005).
    [CrossRef]
  10. K. H. Park, M. W. Kim, Y. T. Byun, D. Woo, S. H. Kim, S. S. Choi, Y. Chung, W. R. Cho, S. H. Park, and U. Kim, “Nondestructive propagation loss and facet reflectance measurements of GaAs/AlGaAs strip-loaded waveguides,” J. Appl. Phys. 78, 6318-6320 (1995).
    [CrossRef]
  11. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communication, 6th ed. (Oxford U. Press, 2006).

2005

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105(2005).
[CrossRef]

1995

K. H. Park, M. W. Kim, Y. T. Byun, D. Woo, S. H. Kim, S. S. Choi, Y. Chung, W. R. Cho, S. H. Park, and U. Kim, “Nondestructive propagation loss and facet reflectance measurements of GaAs/AlGaAs strip-loaded waveguides,” J. Appl. Phys. 78, 6318-6320 (1995).
[CrossRef]

1994

L. S. Yu, Q. Z. Liu, S. A. Pappert, P. K. L. Yu, and S. S. Lau, “Laser spectral linewidth dependence on waveguide loss measurements using the Fabry-Perot method,” Appl. Phys. Lett. 64, 536-538 (1994).
[CrossRef]

1993

G. Titterlbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2, 683-700(1993).
[CrossRef]

1986

1985

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143-147(1985).
[CrossRef]

1983

1980

Y. H. Won, P. C. Jaussaud, and G. H. Chartier, “Three-prism loss measurements of optical waveguides,” Appl. Phys. Lett. 37, 269-271 (1980).
[CrossRef]

1978

I. P. Kaminow and L. W. Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33, 62-64 (1978).
[CrossRef]

1973

Berger, V.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105(2005).
[CrossRef]

Byun, Y. T.

K. H. Park, M. W. Kim, Y. T. Byun, D. Woo, S. H. Kim, S. S. Choi, Y. Chung, W. R. Cho, S. H. Park, and U. Kim, “Nondestructive propagation loss and facet reflectance measurements of GaAs/AlGaAs strip-loaded waveguides,” J. Appl. Phys. 78, 6318-6320 (1995).
[CrossRef]

Calligaro, M.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105(2005).
[CrossRef]

Chartier, G. H.

Y. H. Won, P. C. Jaussaud, and G. H. Chartier, “Three-prism loss measurements of optical waveguides,” Appl. Phys. Lett. 37, 269-271 (1980).
[CrossRef]

Cho, W. R.

K. H. Park, M. W. Kim, Y. T. Byun, D. Woo, S. H. Kim, S. S. Choi, Y. Chung, W. R. Cho, S. H. Park, and U. Kim, “Nondestructive propagation loss and facet reflectance measurements of GaAs/AlGaAs strip-loaded waveguides,” J. Appl. Phys. 78, 6318-6320 (1995).
[CrossRef]

Choi, S. S.

K. H. Park, M. W. Kim, Y. T. Byun, D. Woo, S. H. Kim, S. S. Choi, Y. Chung, W. R. Cho, S. H. Park, and U. Kim, “Nondestructive propagation loss and facet reflectance measurements of GaAs/AlGaAs strip-loaded waveguides,” J. Appl. Phys. 78, 6318-6320 (1995).
[CrossRef]

Chung, Y.

K. H. Park, M. W. Kim, Y. T. Byun, D. Woo, S. H. Kim, S. S. Choi, Y. Chung, W. R. Cho, S. H. Park, and U. Kim, “Nondestructive propagation loss and facet reflectance measurements of GaAs/AlGaAs strip-loaded waveguides,” J. Appl. Phys. 78, 6318-6320 (1995).
[CrossRef]

De Rossi, A.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105(2005).
[CrossRef]

Ducci, S.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105(2005).
[CrossRef]

Dunn, F. A.

Gibson, U. J.

Himel, M. D.

Jaussaud, P. C.

Y. H. Won, P. C. Jaussaud, and G. H. Chartier, “Three-prism loss measurements of optical waveguides,” Appl. Phys. Lett. 37, 269-271 (1980).
[CrossRef]

Kaminow, I. P.

I. P. Kaminow and L. W. Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33, 62-64 (1978).
[CrossRef]

Karthe, W.

G. Titterlbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2, 683-700(1993).
[CrossRef]

Kim, M. W.

K. H. Park, M. W. Kim, Y. T. Byun, D. Woo, S. H. Kim, S. S. Choi, Y. Chung, W. R. Cho, S. H. Park, and U. Kim, “Nondestructive propagation loss and facet reflectance measurements of GaAs/AlGaAs strip-loaded waveguides,” J. Appl. Phys. 78, 6318-6320 (1995).
[CrossRef]

Kim, S. H.

K. H. Park, M. W. Kim, Y. T. Byun, D. Woo, S. H. Kim, S. S. Choi, Y. Chung, W. R. Cho, S. H. Park, and U. Kim, “Nondestructive propagation loss and facet reflectance measurements of GaAs/AlGaAs strip-loaded waveguides,” J. Appl. Phys. 78, 6318-6320 (1995).
[CrossRef]

Kim, U.

K. H. Park, M. W. Kim, Y. T. Byun, D. Woo, S. H. Kim, S. S. Choi, Y. Chung, W. R. Cho, S. H. Park, and U. Kim, “Nondestructive propagation loss and facet reflectance measurements of GaAs/AlGaAs strip-loaded waveguides,” J. Appl. Phys. 78, 6318-6320 (1995).
[CrossRef]

Lanco, L.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105(2005).
[CrossRef]

Lau, S. S.

L. S. Yu, Q. Z. Liu, S. A. Pappert, P. K. L. Yu, and S. S. Lau, “Laser spectral linewidth dependence on waveguide loss measurements using the Fabry-Perot method,” Appl. Phys. Lett. 64, 536-538 (1994).
[CrossRef]

Leibolt, W. N.

Liu, Q. Z.

L. S. Yu, Q. Z. Liu, S. A. Pappert, P. K. L. Yu, and S. S. Lau, “Laser spectral linewidth dependence on waveguide loss measurements using the Fabry-Perot method,” Appl. Phys. Lett. 64, 536-538 (1994).
[CrossRef]

Okamura, Y.

Ortiz, V.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105(2005).
[CrossRef]

Pappert, S. A.

L. S. Yu, Q. Z. Liu, S. A. Pappert, P. K. L. Yu, and S. S. Lau, “Laser spectral linewidth dependence on waveguide loss measurements using the Fabry-Perot method,” Appl. Phys. Lett. 64, 536-538 (1994).
[CrossRef]

Park, K. H.

K. H. Park, M. W. Kim, Y. T. Byun, D. Woo, S. H. Kim, S. S. Choi, Y. Chung, W. R. Cho, S. H. Park, and U. Kim, “Nondestructive propagation loss and facet reflectance measurements of GaAs/AlGaAs strip-loaded waveguides,” J. Appl. Phys. 78, 6318-6320 (1995).
[CrossRef]

Park, S. H.

K. H. Park, M. W. Kim, Y. T. Byun, D. Woo, S. H. Kim, S. S. Choi, Y. Chung, W. R. Cho, S. H. Park, and U. Kim, “Nondestructive propagation loss and facet reflectance measurements of GaAs/AlGaAs strip-loaded waveguides,” J. Appl. Phys. 78, 6318-6320 (1995).
[CrossRef]

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143-147(1985).
[CrossRef]

Richter, B.

G. Titterlbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2, 683-700(1993).
[CrossRef]

Sagnes, I.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105(2005).
[CrossRef]

Sohler, W.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143-147(1985).
[CrossRef]

Stulz, L. W.

I. P. Kaminow and L. W. Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33, 62-64 (1978).
[CrossRef]

Titterlbach, G.

G. Titterlbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2, 683-700(1993).
[CrossRef]

Weber, H. P.

Won, Y. H.

Y. H. Won, P. C. Jaussaud, and G. H. Chartier, “Three-prism loss measurements of optical waveguides,” Appl. Phys. Lett. 37, 269-271 (1980).
[CrossRef]

Woo, D.

K. H. Park, M. W. Kim, Y. T. Byun, D. Woo, S. H. Kim, S. S. Choi, Y. Chung, W. R. Cho, S. H. Park, and U. Kim, “Nondestructive propagation loss and facet reflectance measurements of GaAs/AlGaAs strip-loaded waveguides,” J. Appl. Phys. 78, 6318-6320 (1995).
[CrossRef]

Yamamoto, S.

Yariv, A.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communication, 6th ed. (Oxford U. Press, 2006).

Yeh, P.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communication, 6th ed. (Oxford U. Press, 2006).

Yoshinaka, S.

Yu, L. S.

L. S. Yu, Q. Z. Liu, S. A. Pappert, P. K. L. Yu, and S. S. Lau, “Laser spectral linewidth dependence on waveguide loss measurements using the Fabry-Perot method,” Appl. Phys. Lett. 64, 536-538 (1994).
[CrossRef]

Yu, P. K. L.

L. S. Yu, Q. Z. Liu, S. A. Pappert, P. K. L. Yu, and S. S. Lau, “Laser spectral linewidth dependence on waveguide loss measurements using the Fabry-Perot method,” Appl. Phys. Lett. 64, 536-538 (1994).
[CrossRef]

Appl. Opt.

Appl. Phys. B

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143-147(1985).
[CrossRef]

Appl. Phys. Lett.

L. S. Yu, Q. Z. Liu, S. A. Pappert, P. K. L. Yu, and S. S. Lau, “Laser spectral linewidth dependence on waveguide loss measurements using the Fabry-Perot method,” Appl. Phys. Lett. 64, 536-538 (1994).
[CrossRef]

Y. H. Won, P. C. Jaussaud, and G. H. Chartier, “Three-prism loss measurements of optical waveguides,” Appl. Phys. Lett. 37, 269-271 (1980).
[CrossRef]

I. P. Kaminow and L. W. Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33, 62-64 (1978).
[CrossRef]

J. Appl. Phys.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105(2005).
[CrossRef]

K. H. Park, M. W. Kim, Y. T. Byun, D. Woo, S. H. Kim, S. S. Choi, Y. Chung, W. R. Cho, S. H. Park, and U. Kim, “Nondestructive propagation loss and facet reflectance measurements of GaAs/AlGaAs strip-loaded waveguides,” J. Appl. Phys. 78, 6318-6320 (1995).
[CrossRef]

Pure Appl. Opt.

G. Titterlbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2, 683-700(1993).
[CrossRef]

Other

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communication, 6th ed. (Oxford U. Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the experimental setup. SLED, superluminescent diode; PM, polarization-maintaining; DUT, device under test; SM, single-mode; OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

Experimental measurement and theoretical fit for a 500 μm long device.

Fig. 3
Fig. 3

Plot of ln ( r 1 / r + 1 ) versus length for the two methods investigated. The value of internal loss is also shown in the linear fits.

Fig. 4
Fig. 4

Plot of maximum and minimum intensity with wavelength. The linear fit shows good agreement.

Fig. 5
Fig. 5

Reflection change as the waveguide angle to the facet is changed.

Fig. 6
Fig. 6

Comparison of measured and calculated SLED spectrum for a 500 μm long device. Good agreement is achieved, showing the validity of the curve fit for extraction of loss.

Fig. 7
Fig. 7

Measured propagation loss over a wavelength bandwidth from 1500 to 1600 nm .

Fig. 8
Fig. 8

Fabry–Perot fringes measured using a (a) tunable laser and (b) superluminescent diode in the same setup. Data measured using the superluminescent diode are less noisy as compared to the tunable laser.

Tables (2)

Tables Icon

Table 1 Calculated Internal Loss and Reflectivity for the Waveguides at 1540 nm

Tables Icon

Table 2 Calculated Internal Loss if the Simulated Reflectivity Is Used

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I t I i = ( 1 R ) 2 G ( 1 G R ) 2 + 4 G R sin 2 ( δ / 2 ) ,
δ = 4 π n g L λ ,
( I t I i ) max = ( 1 R ) 2 G ( 1 G R ) 2 ,
( I t I i ) min = ( 1 R ) 2 G ( 1 + G R ) 2 .
r = ( I t / I i ) max ( I t / I i ) min = ( 1 + G R 1 G R ) 2 ,
G = e α L = 1 R r 1 r + 1 ,
α = 1 L ln ( 1 R r 1 r + 1 ) .
α L = ln ( r 1 r + 1 ) + ln ( 1 R ) .
I t I i = ( 1 R ) 2 G ( 1 G R ) 2 1 + 4 G R sin 2 ( δ / 2 ) / ( 1 G R ) 2 .
I t = K 1 + ( r 1 ) ( r + 1 ) sin 2 ( δ / 2 ) I i ( λ ) ,
K = ( 1 R ) 2 G ( 1 G R ) 2 .
M = ( 1 R ) 2 G ( 1 + G R ) 2 .

Metrics