Abstract

A high spectral contrast is expected to be very important when laser-induced fluorescence (LIF) is employed for cancer diagnosis. We developed a LIF optical fiber sensor to achieve a very high spectral contrast between normal and malignant tissues. A comprehensive experimental investigation was carried out to study the role of two critically important parameters for sensor design, namely, the excitation–collection geometry and the excitation wavelength, and their effect on the autofluorescence spectral contrast. An optimum sensing configuration was determined in order to enhance the small, but consistent, spectral difference between the normal and the malignant tissue for improving the accuracy of LIF-based cancer diagnosis. With the optimum sensor configuration, we realized a spectral contrast of more than 22 times between normal and malignant tissue sample spectra.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. G. Stokes, “Uber die andung der Brechbarkeit des Lichtes,” Philos. Trans. R. Soc. London 107, 11-16 (1852).
  2. H. Stübel, “Die Fluoreszenz tierischer Gewebe im ultravioletten Licht,” Pfluegers Arch. Gesamte Physiol. Menschen Tiere 142, 1-9 (1911).
  3. Y. Yang, Y. Ye, F. Li, Y. Li, and P. Ma, “Characteristic autofluorescence for cancer diagnosis and its origin,” Lasers Surg. Med. 7, 528-532 (1987).
    [CrossRef]
  4. E. Profio and D. R. Doiron, “A feasibility study of the use of fluorescence bronchoscopy for the localization of small lung tumors,” Phys. Med. Biol. 22, 949-957 (1977).
    [CrossRef]
  5. R. R. Alfano, A. Pradhan, G. C. Tang, and S. J. Wahl, “Optical spectroscopic diagnosis of cancer and normal breast tissues,” J. Opt. Soc. Am. B 6, 1015-1023 (1989).
    [CrossRef]
  6. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue--basic technology and diagnostic potential,” Lasers Surg. Med. 12, 63-78(1992).
    [CrossRef]
  7. Y. Yang, G. C. Tang, M. Bessler, and R. R. Alfano, “Fluorescence spectroscopy as a photonic pathology method for detecting colon cancer,” Lasers Life Sci. 6, 259-276 (1995).
  8. S. G. Demos, M. Staggs, R. G. Edwards, R. Ramasmooj, and R. White, “Tissue imaging for cancer detection using NIR autofluorescence,” Proc. SPIE 4613, 31-34 (2002).
  9. W. Zheng, L. Weber, C. Cheng, K. C. Soo, and M. Olivo, “Optical excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J.Cancer 104, 477-481 (2003).
  10. A. A. Oraesvsky, S. L. Jacques, G. H. Pettit, R. A. Sauerbrey, F. K. Tittel, J. H. Nguy, and P. D. Henry, “XeCl laser-induced fluorescence of atherosclerotic arteries: spectral similarities between lipid-rich lesions and peroxidized lipoproteins,” Circ. Res. 72, 84-90 (1993).
  11. A. J. Morguet, R. E. Gabriel, A. B. Buchwald, G. S. Werner, R. Nyga, and H. Kreuzer, “ Single-laser approach for fluorescence guidance of excimer laser angioplasty at 308 nm: evaluation in-vitro and during coronary angioplasty,” Lasers Surg. Med. 20, 382-393 (1997).
    [CrossRef]
  12. S. Gupta, V. L. N. S. Raja, A. Pradhan, “simultaneous extraction of optical transport parameters and intrinsic fluorescence of tissue mimicking model media using a spatially resolved fluorescence technique,” Appl. Opt. 45, 7529-7537 (2006).
    [CrossRef]
  13. Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. Mclean, and H. Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63(2004).
  14. V. Nadeau, K. Hamdan, J. Hewett, J. Makaryceva, I. Tait, A. Cushieri, and M. Padgett, “A compact fluorescence spectroscopic tool for cancer detection,” Proc. SPIE 4613, 35-38(2002).
  15. D. L. Heintzelman, U. Utzinger, H. Fuchs, A. Zuluaga, K. Gossage, A. M. Gillenwater, R. Jacob, B. Kemp, and R. R. Richards-Kortum, “Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy,” Photochem. Photobiol. 72, 103-113 (2000).
    [CrossRef]
  16. S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, and B. Gelebart, “Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid medium,” Appl. Opt. 37, 2781-2787 (1998).
    [CrossRef]
  17. A. Gillenwater, R. Jacob, and R. Richards-Kortum, “Fluorescence spectroscopy: a technique with potential to improve the early detection of aerodigestive tract neoplasia,” Head Neck 20, 556-562 (1998).
  18. R. E. N. Shehada, V. Z. Marmarelis, H. N. Mansour, and W. S. Grundfest, “ Laser induced fluorescence attenuation spectroscopy: detection of hypoxia,” IEEE Trans. Biomed. Eng. 47, 301-312 (2000).
    [CrossRef]
  19. J. Keirsse, C. B. Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23-32(2003).
  20. N. Ramanujam, “Fluorescence spectroscopy in vivo,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000), pp. 20-56.
  21. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissue,” Neoplasia 2, 1-29 (2000).
  22. J. M. I. Maarek and S. Kim, “Multispectral excitation of time-resolved fluorescence of biological compounds: variation of fluorescence lifetime with excitation and emission wavelength,” SPIE Proc. 4252, 124-127 (2001).
  23. R. R. Alfano and A. Katz, “Noninvasive fluorescence-based instrumentation for cancer and precancer detection and screening,” Proc. SPIE 3913, 223-226 (2000).
  24. G. D. Fasman, ed., Handbook of Biochemistry and Molecular Biology, 3rd ed. (CRC Press, 1975).
  25. R. M. Berne and M. N. Levy, eds., Physiology (Mosby Year Book, 1993).

2006 (1)

2004 (1)

Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. Mclean, and H. Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63(2004).

2003 (2)

W. Zheng, L. Weber, C. Cheng, K. C. Soo, and M. Olivo, “Optical excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J.Cancer 104, 477-481 (2003).

J. Keirsse, C. B. Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23-32(2003).

2002 (2)

V. Nadeau, K. Hamdan, J. Hewett, J. Makaryceva, I. Tait, A. Cushieri, and M. Padgett, “A compact fluorescence spectroscopic tool for cancer detection,” Proc. SPIE 4613, 35-38(2002).

S. G. Demos, M. Staggs, R. G. Edwards, R. Ramasmooj, and R. White, “Tissue imaging for cancer detection using NIR autofluorescence,” Proc. SPIE 4613, 31-34 (2002).

2001 (1)

J. M. I. Maarek and S. Kim, “Multispectral excitation of time-resolved fluorescence of biological compounds: variation of fluorescence lifetime with excitation and emission wavelength,” SPIE Proc. 4252, 124-127 (2001).

2000 (4)

R. R. Alfano and A. Katz, “Noninvasive fluorescence-based instrumentation for cancer and precancer detection and screening,” Proc. SPIE 3913, 223-226 (2000).

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissue,” Neoplasia 2, 1-29 (2000).

D. L. Heintzelman, U. Utzinger, H. Fuchs, A. Zuluaga, K. Gossage, A. M. Gillenwater, R. Jacob, B. Kemp, and R. R. Richards-Kortum, “Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy,” Photochem. Photobiol. 72, 103-113 (2000).
[CrossRef]

R. E. N. Shehada, V. Z. Marmarelis, H. N. Mansour, and W. S. Grundfest, “ Laser induced fluorescence attenuation spectroscopy: detection of hypoxia,” IEEE Trans. Biomed. Eng. 47, 301-312 (2000).
[CrossRef]

1998 (2)

S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, and B. Gelebart, “Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid medium,” Appl. Opt. 37, 2781-2787 (1998).
[CrossRef]

A. Gillenwater, R. Jacob, and R. Richards-Kortum, “Fluorescence spectroscopy: a technique with potential to improve the early detection of aerodigestive tract neoplasia,” Head Neck 20, 556-562 (1998).

1997 (1)

A. J. Morguet, R. E. Gabriel, A. B. Buchwald, G. S. Werner, R. Nyga, and H. Kreuzer, “ Single-laser approach for fluorescence guidance of excimer laser angioplasty at 308 nm: evaluation in-vitro and during coronary angioplasty,” Lasers Surg. Med. 20, 382-393 (1997).
[CrossRef]

1995 (1)

Y. Yang, G. C. Tang, M. Bessler, and R. R. Alfano, “Fluorescence spectroscopy as a photonic pathology method for detecting colon cancer,” Lasers Life Sci. 6, 259-276 (1995).

1993 (1)

A. A. Oraesvsky, S. L. Jacques, G. H. Pettit, R. A. Sauerbrey, F. K. Tittel, J. H. Nguy, and P. D. Henry, “XeCl laser-induced fluorescence of atherosclerotic arteries: spectral similarities between lipid-rich lesions and peroxidized lipoproteins,” Circ. Res. 72, 84-90 (1993).

1992 (1)

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue--basic technology and diagnostic potential,” Lasers Surg. Med. 12, 63-78(1992).
[CrossRef]

1989 (1)

1987 (1)

Y. Yang, Y. Ye, F. Li, Y. Li, and P. Ma, “Characteristic autofluorescence for cancer diagnosis and its origin,” Lasers Surg. Med. 7, 528-532 (1987).
[CrossRef]

1977 (1)

E. Profio and D. R. Doiron, “A feasibility study of the use of fluorescence bronchoscopy for the localization of small lung tumors,” Phys. Med. Biol. 22, 949-957 (1977).
[CrossRef]

1911 (1)

H. Stübel, “Die Fluoreszenz tierischer Gewebe im ultravioletten Licht,” Pfluegers Arch. Gesamte Physiol. Menschen Tiere 142, 1-9 (1911).

1852 (1)

G. G. Stokes, “Uber die andung der Brechbarkeit des Lichtes,” Philos. Trans. R. Soc. London 107, 11-16 (1852).

Alfano, R. R.

R. R. Alfano and A. Katz, “Noninvasive fluorescence-based instrumentation for cancer and precancer detection and screening,” Proc. SPIE 3913, 223-226 (2000).

Y. Yang, G. C. Tang, M. Bessler, and R. R. Alfano, “Fluorescence spectroscopy as a photonic pathology method for detecting colon cancer,” Lasers Life Sci. 6, 259-276 (1995).

R. R. Alfano, A. Pradhan, G. C. Tang, and S. J. Wahl, “Optical spectroscopic diagnosis of cancer and normal breast tissues,” J. Opt. Soc. Am. B 6, 1015-1023 (1989).
[CrossRef]

Avrillier, S.

Bessler, M.

Y. Yang, G. C. Tang, M. Bessler, and R. R. Alfano, “Fluorescence spectroscopy as a photonic pathology method for detecting colon cancer,” Lasers Life Sci. 6, 259-276 (1995).

Buchwald, A. B.

A. J. Morguet, R. E. Gabriel, A. B. Buchwald, G. S. Werner, R. Nyga, and H. Kreuzer, “ Single-laser approach for fluorescence guidance of excimer laser angioplasty at 308 nm: evaluation in-vitro and during coronary angioplasty,” Lasers Surg. Med. 20, 382-393 (1997).
[CrossRef]

Bureau, B.

J. Keirsse, C. B. Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23-32(2003).

Chen, R.

Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. Mclean, and H. Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63(2004).

Cheng, C.

W. Zheng, L. Weber, C. Cheng, K. C. Soo, and M. Olivo, “Optical excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J.Cancer 104, 477-481 (2003).

Compton, C. C.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue--basic technology and diagnostic potential,” Lasers Surg. Med. 12, 63-78(1992).
[CrossRef]

Cushieri, A.

V. Nadeau, K. Hamdan, J. Hewett, J. Makaryceva, I. Tait, A. Cushieri, and M. Padgett, “A compact fluorescence spectroscopic tool for cancer detection,” Proc. SPIE 4613, 35-38(2002).

Demos, S. G.

S. G. Demos, M. Staggs, R. G. Edwards, R. Ramasmooj, and R. White, “Tissue imaging for cancer detection using NIR autofluorescence,” Proc. SPIE 4613, 31-34 (2002).

Deutsch, T. F.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue--basic technology and diagnostic potential,” Lasers Surg. Med. 12, 63-78(1992).
[CrossRef]

Doiron, D. R.

E. Profio and D. R. Doiron, “A feasibility study of the use of fluorescence bronchoscopy for the localization of small lung tumors,” Phys. Med. Biol. 22, 949-957 (1977).
[CrossRef]

Edwards, R. G.

S. G. Demos, M. Staggs, R. G. Edwards, R. Ramasmooj, and R. White, “Tissue imaging for cancer detection using NIR autofluorescence,” Proc. SPIE 4613, 31-34 (2002).

Ettori, D.

Flotte, T. J.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue--basic technology and diagnostic potential,” Lasers Surg. Med. 12, 63-78(1992).
[CrossRef]

Frisoli, J. K.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue--basic technology and diagnostic potential,” Lasers Surg. Med. 12, 63-78(1992).
[CrossRef]

Fuchs, H.

D. L. Heintzelman, U. Utzinger, H. Fuchs, A. Zuluaga, K. Gossage, A. M. Gillenwater, R. Jacob, B. Kemp, and R. R. Richards-Kortum, “Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy,” Photochem. Photobiol. 72, 103-113 (2000).
[CrossRef]

Gabriel, R. E.

A. J. Morguet, R. E. Gabriel, A. B. Buchwald, G. S. Werner, R. Nyga, and H. Kreuzer, “ Single-laser approach for fluorescence guidance of excimer laser angioplasty at 308 nm: evaluation in-vitro and during coronary angioplasty,” Lasers Surg. Med. 20, 382-393 (1997).
[CrossRef]

Gelebart, B.

Gillenwater, A.

A. Gillenwater, R. Jacob, and R. Richards-Kortum, “Fluorescence spectroscopy: a technique with potential to improve the early detection of aerodigestive tract neoplasia,” Head Neck 20, 556-562 (1998).

Gillenwater, A. M.

D. L. Heintzelman, U. Utzinger, H. Fuchs, A. Zuluaga, K. Gossage, A. M. Gillenwater, R. Jacob, B. Kemp, and R. R. Richards-Kortum, “Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy,” Photochem. Photobiol. 72, 103-113 (2000).
[CrossRef]

Gossage, K.

D. L. Heintzelman, U. Utzinger, H. Fuchs, A. Zuluaga, K. Gossage, A. M. Gillenwater, R. Jacob, B. Kemp, and R. R. Richards-Kortum, “Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy,” Photochem. Photobiol. 72, 103-113 (2000).
[CrossRef]

Grundfest, W. S.

R. E. N. Shehada, V. Z. Marmarelis, H. N. Mansour, and W. S. Grundfest, “ Laser induced fluorescence attenuation spectroscopy: detection of hypoxia,” IEEE Trans. Biomed. Eng. 47, 301-312 (2000).
[CrossRef]

Gupta, S.

Hamdan, K.

V. Nadeau, K. Hamdan, J. Hewett, J. Makaryceva, I. Tait, A. Cushieri, and M. Padgett, “A compact fluorescence spectroscopic tool for cancer detection,” Proc. SPIE 4613, 35-38(2002).

Heintzelman, D. L.

D. L. Heintzelman, U. Utzinger, H. Fuchs, A. Zuluaga, K. Gossage, A. M. Gillenwater, R. Jacob, B. Kemp, and R. R. Richards-Kortum, “Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy,” Photochem. Photobiol. 72, 103-113 (2000).
[CrossRef]

Henry, P. D.

A. A. Oraesvsky, S. L. Jacques, G. H. Pettit, R. A. Sauerbrey, F. K. Tittel, J. H. Nguy, and P. D. Henry, “XeCl laser-induced fluorescence of atherosclerotic arteries: spectral similarities between lipid-rich lesions and peroxidized lipoproteins,” Circ. Res. 72, 84-90 (1993).

Hewett, J.

V. Nadeau, K. Hamdan, J. Hewett, J. Makaryceva, I. Tait, A. Cushieri, and M. Padgett, “A compact fluorescence spectroscopic tool for cancer detection,” Proc. SPIE 4613, 35-38(2002).

Huang, Z.

Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. Mclean, and H. Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63(2004).

Jacob, R.

D. L. Heintzelman, U. Utzinger, H. Fuchs, A. Zuluaga, K. Gossage, A. M. Gillenwater, R. Jacob, B. Kemp, and R. R. Richards-Kortum, “Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy,” Photochem. Photobiol. 72, 103-113 (2000).
[CrossRef]

A. Gillenwater, R. Jacob, and R. Richards-Kortum, “Fluorescence spectroscopy: a technique with potential to improve the early detection of aerodigestive tract neoplasia,” Head Neck 20, 556-562 (1998).

Jacques, S. L.

A. A. Oraesvsky, S. L. Jacques, G. H. Pettit, R. A. Sauerbrey, F. K. Tittel, J. H. Nguy, and P. D. Henry, “XeCl laser-induced fluorescence of atherosclerotic arteries: spectral similarities between lipid-rich lesions and peroxidized lipoproteins,” Circ. Res. 72, 84-90 (1993).

Katz, A.

R. R. Alfano and A. Katz, “Noninvasive fluorescence-based instrumentation for cancer and precancer detection and screening,” Proc. SPIE 3913, 223-226 (2000).

Keirsse, J.

J. Keirsse, C. B. Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23-32(2003).

Kemp, B.

D. L. Heintzelman, U. Utzinger, H. Fuchs, A. Zuluaga, K. Gossage, A. M. Gillenwater, R. Jacob, B. Kemp, and R. R. Richards-Kortum, “Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy,” Photochem. Photobiol. 72, 103-113 (2000).
[CrossRef]

Kim, S.

J. M. I. Maarek and S. Kim, “Multispectral excitation of time-resolved fluorescence of biological compounds: variation of fluorescence lifetime with excitation and emission wavelength,” SPIE Proc. 4252, 124-127 (2001).

Kreuzer, H.

A. J. Morguet, R. E. Gabriel, A. B. Buchwald, G. S. Werner, R. Nyga, and H. Kreuzer, “ Single-laser approach for fluorescence guidance of excimer laser angioplasty at 308 nm: evaluation in-vitro and during coronary angioplasty,” Lasers Surg. Med. 20, 382-393 (1997).
[CrossRef]

Leroyer, P.

J. Keirsse, C. B. Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23-32(2003).

Li, F.

Y. Yang, Y. Ye, F. Li, Y. Li, and P. Ma, “Characteristic autofluorescence for cancer diagnosis and its origin,” Lasers Surg. Med. 7, 528-532 (1987).
[CrossRef]

Li, Y.

Y. Yang, Y. Ye, F. Li, Y. Li, and P. Ma, “Characteristic autofluorescence for cancer diagnosis and its origin,” Lasers Surg. Med. 7, 528-532 (1987).
[CrossRef]

Loreal, O.

J. Keirsse, C. B. Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23-32(2003).

Lucas, J.

J. Keirsse, C. B. Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23-32(2003).

Lui, H.

Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. Mclean, and H. Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63(2004).

Ma, P.

Y. Yang, Y. Ye, F. Li, Y. Li, and P. Ma, “Characteristic autofluorescence for cancer diagnosis and its origin,” Lasers Surg. Med. 7, 528-532 (1987).
[CrossRef]

Maarek, J. M. I.

J. M. I. Maarek and S. Kim, “Multispectral excitation of time-resolved fluorescence of biological compounds: variation of fluorescence lifetime with excitation and emission wavelength,” SPIE Proc. 4252, 124-127 (2001).

Makaryceva, J.

V. Nadeau, K. Hamdan, J. Hewett, J. Makaryceva, I. Tait, A. Cushieri, and M. Padgett, “A compact fluorescence spectroscopic tool for cancer detection,” Proc. SPIE 4613, 35-38(2002).

Mansour, H. N.

R. E. N. Shehada, V. Z. Marmarelis, H. N. Mansour, and W. S. Grundfest, “ Laser induced fluorescence attenuation spectroscopy: detection of hypoxia,” IEEE Trans. Biomed. Eng. 47, 301-312 (2000).
[CrossRef]

Marmarelis, V. Z.

R. E. N. Shehada, V. Z. Marmarelis, H. N. Mansour, and W. S. Grundfest, “ Laser induced fluorescence attenuation spectroscopy: detection of hypoxia,” IEEE Trans. Biomed. Eng. 47, 301-312 (2000).
[CrossRef]

Mclean, D. I.

Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. Mclean, and H. Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63(2004).

Morguet, A. J.

A. J. Morguet, R. E. Gabriel, A. B. Buchwald, G. S. Werner, R. Nyga, and H. Kreuzer, “ Single-laser approach for fluorescence guidance of excimer laser angioplasty at 308 nm: evaluation in-vitro and during coronary angioplasty,” Lasers Surg. Med. 20, 382-393 (1997).
[CrossRef]

Nadeau, V.

V. Nadeau, K. Hamdan, J. Hewett, J. Makaryceva, I. Tait, A. Cushieri, and M. Padgett, “A compact fluorescence spectroscopic tool for cancer detection,” Proc. SPIE 4613, 35-38(2002).

Nguy, J. H.

A. A. Oraesvsky, S. L. Jacques, G. H. Pettit, R. A. Sauerbrey, F. K. Tittel, J. H. Nguy, and P. D. Henry, “XeCl laser-induced fluorescence of atherosclerotic arteries: spectral similarities between lipid-rich lesions and peroxidized lipoproteins,” Circ. Res. 72, 84-90 (1993).

Nishioka, N. S.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue--basic technology and diagnostic potential,” Lasers Surg. Med. 12, 63-78(1992).
[CrossRef]

Nyga, R.

A. J. Morguet, R. E. Gabriel, A. B. Buchwald, G. S. Werner, R. Nyga, and H. Kreuzer, “ Single-laser approach for fluorescence guidance of excimer laser angioplasty at 308 nm: evaluation in-vitro and during coronary angioplasty,” Lasers Surg. Med. 20, 382-393 (1997).
[CrossRef]

Olivo, M.

W. Zheng, L. Weber, C. Cheng, K. C. Soo, and M. Olivo, “Optical excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J.Cancer 104, 477-481 (2003).

Oraesvsky, A. A.

A. A. Oraesvsky, S. L. Jacques, G. H. Pettit, R. A. Sauerbrey, F. K. Tittel, J. H. Nguy, and P. D. Henry, “XeCl laser-induced fluorescence of atherosclerotic arteries: spectral similarities between lipid-rich lesions and peroxidized lipoproteins,” Circ. Res. 72, 84-90 (1993).

Padgett, M.

V. Nadeau, K. Hamdan, J. Hewett, J. Makaryceva, I. Tait, A. Cushieri, and M. Padgett, “A compact fluorescence spectroscopic tool for cancer detection,” Proc. SPIE 4613, 35-38(2002).

Pettit, G. H.

A. A. Oraesvsky, S. L. Jacques, G. H. Pettit, R. A. Sauerbrey, F. K. Tittel, J. H. Nguy, and P. D. Henry, “XeCl laser-induced fluorescence of atherosclerotic arteries: spectral similarities between lipid-rich lesions and peroxidized lipoproteins,” Circ. Res. 72, 84-90 (1993).

Pledel, C. B.

J. Keirsse, C. B. Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23-32(2003).

Pradhan, A.

Profio, E.

E. Profio and D. R. Doiron, “A feasibility study of the use of fluorescence bronchoscopy for the localization of small lung tumors,” Phys. Med. Biol. 22, 949-957 (1977).
[CrossRef]

Raja, V. L. N. S.

Ramanujam, N.

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissue,” Neoplasia 2, 1-29 (2000).

N. Ramanujam, “Fluorescence spectroscopy in vivo,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000), pp. 20-56.

Ramasmooj, R.

S. G. Demos, M. Staggs, R. G. Edwards, R. Ramasmooj, and R. White, “Tissue imaging for cancer detection using NIR autofluorescence,” Proc. SPIE 4613, 31-34 (2002).

Richards-Kortum, R.

A. Gillenwater, R. Jacob, and R. Richards-Kortum, “Fluorescence spectroscopy: a technique with potential to improve the early detection of aerodigestive tract neoplasia,” Head Neck 20, 556-562 (1998).

Richards-Kortum, R. R.

D. L. Heintzelman, U. Utzinger, H. Fuchs, A. Zuluaga, K. Gossage, A. M. Gillenwater, R. Jacob, B. Kemp, and R. R. Richards-Kortum, “Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy,” Photochem. Photobiol. 72, 103-113 (2000).
[CrossRef]

Richter, J. M.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue--basic technology and diagnostic potential,” Lasers Surg. Med. 12, 63-78(1992).
[CrossRef]

Sauerbrey, R. A.

A. A. Oraesvsky, S. L. Jacques, G. H. Pettit, R. A. Sauerbrey, F. K. Tittel, J. H. Nguy, and P. D. Henry, “XeCl laser-induced fluorescence of atherosclerotic arteries: spectral similarities between lipid-rich lesions and peroxidized lipoproteins,” Circ. Res. 72, 84-90 (1993).

Schomacker, K. T.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue--basic technology and diagnostic potential,” Lasers Surg. Med. 12, 63-78(1992).
[CrossRef]

Shehada, R. E. N.

R. E. N. Shehada, V. Z. Marmarelis, H. N. Mansour, and W. S. Grundfest, “ Laser induced fluorescence attenuation spectroscopy: detection of hypoxia,” IEEE Trans. Biomed. Eng. 47, 301-312 (2000).
[CrossRef]

Sire, O.

J. Keirsse, C. B. Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23-32(2003).

Soo, K. C.

W. Zheng, L. Weber, C. Cheng, K. C. Soo, and M. Olivo, “Optical excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J.Cancer 104, 477-481 (2003).

Staggs, M.

S. G. Demos, M. Staggs, R. G. Edwards, R. Ramasmooj, and R. White, “Tissue imaging for cancer detection using NIR autofluorescence,” Proc. SPIE 4613, 31-34 (2002).

Stokes, G. G.

G. G. Stokes, “Uber die andung der Brechbarkeit des Lichtes,” Philos. Trans. R. Soc. London 107, 11-16 (1852).

Stübel, H.

H. Stübel, “Die Fluoreszenz tierischer Gewebe im ultravioletten Licht,” Pfluegers Arch. Gesamte Physiol. Menschen Tiere 142, 1-9 (1911).

Tait, I.

V. Nadeau, K. Hamdan, J. Hewett, J. Makaryceva, I. Tait, A. Cushieri, and M. Padgett, “A compact fluorescence spectroscopic tool for cancer detection,” Proc. SPIE 4613, 35-38(2002).

Tang, G. C.

Y. Yang, G. C. Tang, M. Bessler, and R. R. Alfano, “Fluorescence spectroscopy as a photonic pathology method for detecting colon cancer,” Lasers Life Sci. 6, 259-276 (1995).

R. R. Alfano, A. Pradhan, G. C. Tang, and S. J. Wahl, “Optical spectroscopic diagnosis of cancer and normal breast tissues,” J. Opt. Soc. Am. B 6, 1015-1023 (1989).
[CrossRef]

Tinet, E.

Tittel, F. K.

A. A. Oraesvsky, S. L. Jacques, G. H. Pettit, R. A. Sauerbrey, F. K. Tittel, J. H. Nguy, and P. D. Henry, “XeCl laser-induced fluorescence of atherosclerotic arteries: spectral similarities between lipid-rich lesions and peroxidized lipoproteins,” Circ. Res. 72, 84-90 (1993).

Tualle, J. M.

Turlin, B.

J. Keirsse, C. B. Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23-32(2003).

Utzinger, U.

D. L. Heintzelman, U. Utzinger, H. Fuchs, A. Zuluaga, K. Gossage, A. M. Gillenwater, R. Jacob, B. Kemp, and R. R. Richards-Kortum, “Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy,” Photochem. Photobiol. 72, 103-113 (2000).
[CrossRef]

Wahl, S. J.

Weber, L.

W. Zheng, L. Weber, C. Cheng, K. C. Soo, and M. Olivo, “Optical excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J.Cancer 104, 477-481 (2003).

Werner, G. S.

A. J. Morguet, R. E. Gabriel, A. B. Buchwald, G. S. Werner, R. Nyga, and H. Kreuzer, “ Single-laser approach for fluorescence guidance of excimer laser angioplasty at 308 nm: evaluation in-vitro and during coronary angioplasty,” Lasers Surg. Med. 20, 382-393 (1997).
[CrossRef]

White, R.

S. G. Demos, M. Staggs, R. G. Edwards, R. Ramasmooj, and R. White, “Tissue imaging for cancer detection using NIR autofluorescence,” Proc. SPIE 4613, 31-34 (2002).

Xie, S.

Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. Mclean, and H. Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63(2004).

Yang, Y.

Y. Yang, G. C. Tang, M. Bessler, and R. R. Alfano, “Fluorescence spectroscopy as a photonic pathology method for detecting colon cancer,” Lasers Life Sci. 6, 259-276 (1995).

Y. Yang, Y. Ye, F. Li, Y. Li, and P. Ma, “Characteristic autofluorescence for cancer diagnosis and its origin,” Lasers Surg. Med. 7, 528-532 (1987).
[CrossRef]

Ye, Y.

Y. Yang, Y. Ye, F. Li, Y. Li, and P. Ma, “Characteristic autofluorescence for cancer diagnosis and its origin,” Lasers Surg. Med. 7, 528-532 (1987).
[CrossRef]

Zeng, H.

Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. Mclean, and H. Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63(2004).

Zheng, W.

Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. Mclean, and H. Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63(2004).

W. Zheng, L. Weber, C. Cheng, K. C. Soo, and M. Olivo, “Optical excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J.Cancer 104, 477-481 (2003).

Zuluaga, A.

D. L. Heintzelman, U. Utzinger, H. Fuchs, A. Zuluaga, K. Gossage, A. M. Gillenwater, R. Jacob, B. Kemp, and R. R. Richards-Kortum, “Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy,” Photochem. Photobiol. 72, 103-113 (2000).
[CrossRef]

Appl. Opt. (2)

Circ. Res. (1)

A. A. Oraesvsky, S. L. Jacques, G. H. Pettit, R. A. Sauerbrey, F. K. Tittel, J. H. Nguy, and P. D. Henry, “XeCl laser-induced fluorescence of atherosclerotic arteries: spectral similarities between lipid-rich lesions and peroxidized lipoproteins,” Circ. Res. 72, 84-90 (1993).

Head Neck (1)

A. Gillenwater, R. Jacob, and R. Richards-Kortum, “Fluorescence spectroscopy: a technique with potential to improve the early detection of aerodigestive tract neoplasia,” Head Neck 20, 556-562 (1998).

IEEE Trans. Biomed. Eng. (1)

R. E. N. Shehada, V. Z. Marmarelis, H. N. Mansour, and W. S. Grundfest, “ Laser induced fluorescence attenuation spectroscopy: detection of hypoxia,” IEEE Trans. Biomed. Eng. 47, 301-312 (2000).
[CrossRef]

Int. J. Oncol. (1)

Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. Mclean, and H. Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63(2004).

Int. J.Cancer (1)

W. Zheng, L. Weber, C. Cheng, K. C. Soo, and M. Olivo, “Optical excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J.Cancer 104, 477-481 (2003).

J. Opt. Soc. Am. B (1)

Lasers Life Sci. (1)

Y. Yang, G. C. Tang, M. Bessler, and R. R. Alfano, “Fluorescence spectroscopy as a photonic pathology method for detecting colon cancer,” Lasers Life Sci. 6, 259-276 (1995).

Lasers Surg. Med. (3)

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue--basic technology and diagnostic potential,” Lasers Surg. Med. 12, 63-78(1992).
[CrossRef]

Y. Yang, Y. Ye, F. Li, Y. Li, and P. Ma, “Characteristic autofluorescence for cancer diagnosis and its origin,” Lasers Surg. Med. 7, 528-532 (1987).
[CrossRef]

A. J. Morguet, R. E. Gabriel, A. B. Buchwald, G. S. Werner, R. Nyga, and H. Kreuzer, “ Single-laser approach for fluorescence guidance of excimer laser angioplasty at 308 nm: evaluation in-vitro and during coronary angioplasty,” Lasers Surg. Med. 20, 382-393 (1997).
[CrossRef]

Neoplasia (1)

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissue,” Neoplasia 2, 1-29 (2000).

Pfluegers Arch. Gesamte Physiol. Menschen Tiere (1)

H. Stübel, “Die Fluoreszenz tierischer Gewebe im ultravioletten Licht,” Pfluegers Arch. Gesamte Physiol. Menschen Tiere 142, 1-9 (1911).

Philos. Trans. R. Soc. London (1)

G. G. Stokes, “Uber die andung der Brechbarkeit des Lichtes,” Philos. Trans. R. Soc. London 107, 11-16 (1852).

Photochem. Photobiol. (1)

D. L. Heintzelman, U. Utzinger, H. Fuchs, A. Zuluaga, K. Gossage, A. M. Gillenwater, R. Jacob, B. Kemp, and R. R. Richards-Kortum, “Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy,” Photochem. Photobiol. 72, 103-113 (2000).
[CrossRef]

Phys. Med. Biol. (1)

E. Profio and D. R. Doiron, “A feasibility study of the use of fluorescence bronchoscopy for the localization of small lung tumors,” Phys. Med. Biol. 22, 949-957 (1977).
[CrossRef]

Proc. SPIE (3)

S. G. Demos, M. Staggs, R. G. Edwards, R. Ramasmooj, and R. White, “Tissue imaging for cancer detection using NIR autofluorescence,” Proc. SPIE 4613, 31-34 (2002).

V. Nadeau, K. Hamdan, J. Hewett, J. Makaryceva, I. Tait, A. Cushieri, and M. Padgett, “A compact fluorescence spectroscopic tool for cancer detection,” Proc. SPIE 4613, 35-38(2002).

R. R. Alfano and A. Katz, “Noninvasive fluorescence-based instrumentation for cancer and precancer detection and screening,” Proc. SPIE 3913, 223-226 (2000).

SPIE Proc. (1)

J. M. I. Maarek and S. Kim, “Multispectral excitation of time-resolved fluorescence of biological compounds: variation of fluorescence lifetime with excitation and emission wavelength,” SPIE Proc. 4252, 124-127 (2001).

Vib. Spectrosc. (1)

J. Keirsse, C. B. Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23-32(2003).

Other (3)

N. Ramanujam, “Fluorescence spectroscopy in vivo,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000), pp. 20-56.

G. D. Fasman, ed., Handbook of Biochemistry and Molecular Biology, 3rd ed. (CRC Press, 1975).

R. M. Berne and M. N. Levy, eds., Physiology (Mosby Year Book, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic representation of the optical fiber sensor comprising (a) separate optical fibers for excitation and collection and (b) Y-reflection probe. DM, dichroic mirror; A, aperture; NDF, neutral density filter; P, glass plate; L, lens; OF, optical fiber; EOF, excitation optical fiber; ROF, receiving optical fiber; CF, cutoff filter; S, spectrometer.

Fig. 2
Fig. 2

Typical fluorescence emission spectra from (a) spleen, (b) kidney, and (c) liver obtained with sensor Geometry I, comprising two identical fibers for excitation and collection.

Fig. 3
Fig. 3

Typical fluorescence emission spectra from (a) spleen, (b) kidney, and (c) liver obtained with sensor Geometry II, including the Y-reflection optical fiber probe.

Fig. 4
Fig. 4

Comparison of the intensity ratio of normal-to-cancerous tissue for both sensor configurations at (a)  the 440 nm emission peak, and (b) the 485 nm emission peak.

Fig. 5
Fig. 5

Comparison of typical fluorescence emission spectra obtained at 355, 410, and 532 nm laser excitation from (a) kidney, (b) liver, and (c) spleen. Black curve, results obtained at 355 nm excitation; thin gray curve, results obtained at 410 nm excitation; thick gray curve, results obtained at 532 nm excitation.

Fig. 6
Fig. 6

A comparison of the intensity ratio of normal-to-cancerous tissue of different body organs at 485 , 492 , and 557 nm emission peaks, corresponding to the excitation wavelengths 355, 410, and 532 nm with sensor Geometry II.

Fig. 7
Fig. 7

Normalized fluorescence spectra of NADH ( 25 μM ) and flavins ( 0.5 μM ) in a buffer solution.

Fig. 8
Fig. 8

Experimentally observed normalized fluorescence spectra along with the simulated fluorescence spectra of NADH.

Tables (3)

Tables Icon

Table 1 Ratio of Peak Intensity for Normal to Cancer Tissue Samples at Observed Characteristic Emission Maxima for Two Sensor Geometries

Tables Icon

Table 2 Change of Fluorescence Signal between Geometry I and Geometry II

Tables Icon

Table 3 Ratio of Peak Intensity for Normal to Cancer Tissue Samples at Observed Characteristic Emission Maxima Corresponding to Different Excitation Wavelengths

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F ( λ ) = i a i S i ( λ ) ,

Metrics