Abstract

When investigating combustion phenomena with pump–probe techniques, the spatial resolution is given by the overlapping region of the laser beams and thus defines the probe volume size. The size of this probe volume becomes important when the length scales of interest are on the same order or smaller. We present a new approach to measure the probe volume in three dimensions, which can be used to determine the probe volume length, diameter, and shape. The optical arrangement and data evaluation are demonstrated for a dual-pump dual-broadband coherent anti-Stokes Raman scattering setup that is used for combustion diagnostics. This new approach offers a simple, quick alternative with more capabilities than formerly used probe volume measurement methods.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).
  2. S. O'Byrne, P. M. Danehy, A. D. Cutler, and S. A. Tedder, “Dual-pump coherent anti-Stokes Raman scattering measurements in a supersonic combustor,” AIAA J. 45, 922-933 (2007).
    [CrossRef]
  3. M. C. Weikl, T. Seeger, R. Hierold, and A. Leipertz, “Dual-pump CARS measurements of N2, H2 and CO in a partially premixed flame,” J. Raman Spectrosc. 38, 983-988 (2007).
    [CrossRef]
  4. H.-J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).
  5. T. Seeger, J. Kiefer, M. C. Weikl, A. Leipertz, and D. N. Kozlov, “Time-resolved measurement of the local equivalence ratio in a gaseous propane injection process using laser-induced gratings,” Opt. Express 14, 12994-13000 (2006).
    [CrossRef] [PubMed]
  6. T. Dreier and P. Ewart, “Coherent techniques for measurements with intermediate concentrations,” in Applied Combustion Research, K. Kohse-Höinghaus and J. B. Jeffries, eds. (Taylor and Francis, 2002).
  7. T. Dreier and D. J. Rakestraw, “Measurement of OH rotational temperatures in a flame using degenerate four-wave mixing,” Opt. Lett. 15, 72-74 (1990).
    [CrossRef] [PubMed]
  8. J. Kiefer, Z. S. Li, J. Zetterberg, M. Linvin, and M. Aldén, “Simultaneous laser-induced fluorescence and sub-Doppler polarization spectroscopy of the CH radical,” Opt. Commun. 270, 347-352 (2007).
    [CrossRef]
  9. D. A. Greenhalgh, “Comments on the use of BOXCARS for gas-phase CARS spectroscopy,” J. Raman Spectrosc. 14, 150-153 (1983).
    [CrossRef]
  10. T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665-2671 (1996).
    [CrossRef] [PubMed]
  11. T. Doerk, J. Ehlbeck, P. Jauernik, J. Stancot, J. Uhlenbusch, and T. Wottka, “Diagnostics of a microwave CO2 laser discharge by means of narrow-band BOXCARS,” J. Phys. D Appl. Phys. 26, 1015-1022 (1993).
    [CrossRef]
  12. D. Bivolaru and G. C. Herring, “Focal-plane imaging of crossed beams in nonlinear optics experiments,” Rev. Sci. Instrum. 78, 056102 (2007).
    [CrossRef] [PubMed]
  13. R. E. Teets, “CARS signals: phase matching, transverse modes, and optical damage effects,” Appl. Opt. 25, 855-862(1986).
    [CrossRef] [PubMed]

2007

S. O'Byrne, P. M. Danehy, A. D. Cutler, and S. A. Tedder, “Dual-pump coherent anti-Stokes Raman scattering measurements in a supersonic combustor,” AIAA J. 45, 922-933 (2007).
[CrossRef]

M. C. Weikl, T. Seeger, R. Hierold, and A. Leipertz, “Dual-pump CARS measurements of N2, H2 and CO in a partially premixed flame,” J. Raman Spectrosc. 38, 983-988 (2007).
[CrossRef]

J. Kiefer, Z. S. Li, J. Zetterberg, M. Linvin, and M. Aldén, “Simultaneous laser-induced fluorescence and sub-Doppler polarization spectroscopy of the CH radical,” Opt. Commun. 270, 347-352 (2007).
[CrossRef]

D. Bivolaru and G. C. Herring, “Focal-plane imaging of crossed beams in nonlinear optics experiments,” Rev. Sci. Instrum. 78, 056102 (2007).
[CrossRef] [PubMed]

2006

1996

1993

T. Doerk, J. Ehlbeck, P. Jauernik, J. Stancot, J. Uhlenbusch, and T. Wottka, “Diagnostics of a microwave CO2 laser discharge by means of narrow-band BOXCARS,” J. Phys. D Appl. Phys. 26, 1015-1022 (1993).
[CrossRef]

1990

1986

1983

D. A. Greenhalgh, “Comments on the use of BOXCARS for gas-phase CARS spectroscopy,” J. Raman Spectrosc. 14, 150-153 (1983).
[CrossRef]

Aldén, M.

J. Kiefer, Z. S. Li, J. Zetterberg, M. Linvin, and M. Aldén, “Simultaneous laser-induced fluorescence and sub-Doppler polarization spectroscopy of the CH radical,” Opt. Commun. 270, 347-352 (2007).
[CrossRef]

Bivolaru, D.

D. Bivolaru and G. C. Herring, “Focal-plane imaging of crossed beams in nonlinear optics experiments,” Rev. Sci. Instrum. 78, 056102 (2007).
[CrossRef] [PubMed]

Cutler, A. D.

S. O'Byrne, P. M. Danehy, A. D. Cutler, and S. A. Tedder, “Dual-pump coherent anti-Stokes Raman scattering measurements in a supersonic combustor,” AIAA J. 45, 922-933 (2007).
[CrossRef]

Danehy, P. M.

S. O'Byrne, P. M. Danehy, A. D. Cutler, and S. A. Tedder, “Dual-pump coherent anti-Stokes Raman scattering measurements in a supersonic combustor,” AIAA J. 45, 922-933 (2007).
[CrossRef]

Doerk, T.

T. Doerk, J. Ehlbeck, P. Jauernik, J. Stancot, J. Uhlenbusch, and T. Wottka, “Diagnostics of a microwave CO2 laser discharge by means of narrow-band BOXCARS,” J. Phys. D Appl. Phys. 26, 1015-1022 (1993).
[CrossRef]

Dreier, T.

T. Dreier and D. J. Rakestraw, “Measurement of OH rotational temperatures in a flame using degenerate four-wave mixing,” Opt. Lett. 15, 72-74 (1990).
[CrossRef] [PubMed]

T. Dreier and P. Ewart, “Coherent techniques for measurements with intermediate concentrations,” in Applied Combustion Research, K. Kohse-Höinghaus and J. B. Jeffries, eds. (Taylor and Francis, 2002).

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).

Ehlbeck, J.

T. Doerk, J. Ehlbeck, P. Jauernik, J. Stancot, J. Uhlenbusch, and T. Wottka, “Diagnostics of a microwave CO2 laser discharge by means of narrow-band BOXCARS,” J. Phys. D Appl. Phys. 26, 1015-1022 (1993).
[CrossRef]

Eichler, H.-J.

H.-J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).

Ewart, P.

T. Dreier and P. Ewart, “Coherent techniques for measurements with intermediate concentrations,” in Applied Combustion Research, K. Kohse-Höinghaus and J. B. Jeffries, eds. (Taylor and Francis, 2002).

Greenhalgh, D. A.

D. A. Greenhalgh, “Comments on the use of BOXCARS for gas-phase CARS spectroscopy,” J. Raman Spectrosc. 14, 150-153 (1983).
[CrossRef]

Günter, P.

H.-J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).

Herring, G. C.

D. Bivolaru and G. C. Herring, “Focal-plane imaging of crossed beams in nonlinear optics experiments,” Rev. Sci. Instrum. 78, 056102 (2007).
[CrossRef] [PubMed]

Hierold, R.

M. C. Weikl, T. Seeger, R. Hierold, and A. Leipertz, “Dual-pump CARS measurements of N2, H2 and CO in a partially premixed flame,” J. Raman Spectrosc. 38, 983-988 (2007).
[CrossRef]

Jauernik, P.

T. Doerk, J. Ehlbeck, P. Jauernik, J. Stancot, J. Uhlenbusch, and T. Wottka, “Diagnostics of a microwave CO2 laser discharge by means of narrow-band BOXCARS,” J. Phys. D Appl. Phys. 26, 1015-1022 (1993).
[CrossRef]

Kiefer, J.

J. Kiefer, Z. S. Li, J. Zetterberg, M. Linvin, and M. Aldén, “Simultaneous laser-induced fluorescence and sub-Doppler polarization spectroscopy of the CH radical,” Opt. Commun. 270, 347-352 (2007).
[CrossRef]

T. Seeger, J. Kiefer, M. C. Weikl, A. Leipertz, and D. N. Kozlov, “Time-resolved measurement of the local equivalence ratio in a gaseous propane injection process using laser-induced gratings,” Opt. Express 14, 12994-13000 (2006).
[CrossRef] [PubMed]

Kozlov, D. N.

Leipertz, A.

Li, Z. S.

J. Kiefer, Z. S. Li, J. Zetterberg, M. Linvin, and M. Aldén, “Simultaneous laser-induced fluorescence and sub-Doppler polarization spectroscopy of the CH radical,” Opt. Commun. 270, 347-352 (2007).
[CrossRef]

Linvin, M.

J. Kiefer, Z. S. Li, J. Zetterberg, M. Linvin, and M. Aldén, “Simultaneous laser-induced fluorescence and sub-Doppler polarization spectroscopy of the CH radical,” Opt. Commun. 270, 347-352 (2007).
[CrossRef]

O'Byrne, S.

S. O'Byrne, P. M. Danehy, A. D. Cutler, and S. A. Tedder, “Dual-pump coherent anti-Stokes Raman scattering measurements in a supersonic combustor,” AIAA J. 45, 922-933 (2007).
[CrossRef]

Pohl, D. W.

H.-J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).

Rakestraw, D. J.

Seeger, T.

Stancot, J.

T. Doerk, J. Ehlbeck, P. Jauernik, J. Stancot, J. Uhlenbusch, and T. Wottka, “Diagnostics of a microwave CO2 laser discharge by means of narrow-band BOXCARS,” J. Phys. D Appl. Phys. 26, 1015-1022 (1993).
[CrossRef]

Tedder, S. A.

S. O'Byrne, P. M. Danehy, A. D. Cutler, and S. A. Tedder, “Dual-pump coherent anti-Stokes Raman scattering measurements in a supersonic combustor,” AIAA J. 45, 922-933 (2007).
[CrossRef]

Teets, R. E.

Uhlenbusch, J.

T. Doerk, J. Ehlbeck, P. Jauernik, J. Stancot, J. Uhlenbusch, and T. Wottka, “Diagnostics of a microwave CO2 laser discharge by means of narrow-band BOXCARS,” J. Phys. D Appl. Phys. 26, 1015-1022 (1993).
[CrossRef]

Weikl, M. C.

Wottka, T.

T. Doerk, J. Ehlbeck, P. Jauernik, J. Stancot, J. Uhlenbusch, and T. Wottka, “Diagnostics of a microwave CO2 laser discharge by means of narrow-band BOXCARS,” J. Phys. D Appl. Phys. 26, 1015-1022 (1993).
[CrossRef]

Zetterberg, J.

J. Kiefer, Z. S. Li, J. Zetterberg, M. Linvin, and M. Aldén, “Simultaneous laser-induced fluorescence and sub-Doppler polarization spectroscopy of the CH radical,” Opt. Commun. 270, 347-352 (2007).
[CrossRef]

AIAA J.

S. O'Byrne, P. M. Danehy, A. D. Cutler, and S. A. Tedder, “Dual-pump coherent anti-Stokes Raman scattering measurements in a supersonic combustor,” AIAA J. 45, 922-933 (2007).
[CrossRef]

Appl. Opt.

J. Phys. D Appl. Phys.

T. Doerk, J. Ehlbeck, P. Jauernik, J. Stancot, J. Uhlenbusch, and T. Wottka, “Diagnostics of a microwave CO2 laser discharge by means of narrow-band BOXCARS,” J. Phys. D Appl. Phys. 26, 1015-1022 (1993).
[CrossRef]

J. Raman Spectrosc.

M. C. Weikl, T. Seeger, R. Hierold, and A. Leipertz, “Dual-pump CARS measurements of N2, H2 and CO in a partially premixed flame,” J. Raman Spectrosc. 38, 983-988 (2007).
[CrossRef]

D. A. Greenhalgh, “Comments on the use of BOXCARS for gas-phase CARS spectroscopy,” J. Raman Spectrosc. 14, 150-153 (1983).
[CrossRef]

Opt. Commun.

J. Kiefer, Z. S. Li, J. Zetterberg, M. Linvin, and M. Aldén, “Simultaneous laser-induced fluorescence and sub-Doppler polarization spectroscopy of the CH radical,” Opt. Commun. 270, 347-352 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

D. Bivolaru and G. C. Herring, “Focal-plane imaging of crossed beams in nonlinear optics experiments,” Rev. Sci. Instrum. 78, 056102 (2007).
[CrossRef] [PubMed]

Other

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).

T. Dreier and P. Ewart, “Coherent techniques for measurements with intermediate concentrations,” in Applied Combustion Research, K. Kohse-Höinghaus and J. B. Jeffries, eds. (Taylor and Francis, 2002).

H.-J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup of probe volume measurement technique.

Fig. 2
Fig. 2

Illustration of the dual-pump dual- broadband folded BOXCARS phase matching scheme used to demonstrate the new technique for probe volume measurements.

Fig. 3
Fig. 3

For each individual beam images at z locations along the focus spaced by 0.25 mm are taken. For better visibility, only images of z locations 9 mm / 0 mm / + 10 mm are shown in this figure.

Fig. 4
Fig. 4

Representation of the 3D model of the dual-pump CARS probe volume, ( E 1 E 2 E 3 ) as a function of x, y, z, or E 4 , x , y , z .

Fig. 5
Fig. 5

Integrated magnitude plot giving the length of the probe volume defined as 5 % 95% of the accumulated intensity.

Fig. 6
Fig. 6

Comparison of probe volume lengths of different phase-matching geometries, planar and folded BOXCARS, from a dual-pump dual-broadband CARS setup.

Fig. 7
Fig. 7

Verification of overlap of the rotational and vibrational dual-pump dual-broadband CARS 3D probe volumes. The scale of x and y to z is four to one.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E 4 ( r 0 ) = K e i k 4 r 0 k 4 2 r 0 E 1 ( r ) E 2 * ( r ) E 3 ( r ) × e i r ( k 4 r 0 + k 2 k 1 k 3 ) d V .
E 4 x , y , z E 1 , x , y , z E 2 , x , y , z E 3 , x , y , z .

Metrics