Abstract

We present a new kind of compact, simple, and low cost optical pressure sensor. The physical principle on which the sensor is based, components, layout of the system, and characterization are described. The range of pressures in which the sensor works is from about 0.5 to 3 psi (1  psi=6.895kPa).

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Meinel and M. P. Meinel, “Inflatable membrane mirrors for opical passband imagery,” Opt. Eng. 39, 541-550 (2000).
    [CrossRef]
  2. E. F. Borra, “The case for liquid mirrors in orbiting telescopes,” Astrophys. J. 373, 317-321 (1991).
    [CrossRef]
  3. E. F. Borra, “The case for a liquid mirror in a lunar-based telescope,” Astrophys. J. 392, 375-383 (1992).
    [CrossRef]
  4. L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157-170 (2000).
    [CrossRef]
  5. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130(2004).
    [CrossRef]
  6. www.varioptic.com. The site describes a liquid lens based on the electrowetting phenomenon.
  7. A. N. Simonov, O. Akhzar-Mehr, and G. Vdovin, “Light scanner based on a viscoelastic stretchable grating,” Opt. Lett. 30, 949-951 (2005).
    [CrossRef] [PubMed]
  8. H. Yu, G. Zhou, S. F. Cau, and F. Lee, “Optofluidic variable aperture,” Opt. Lett. 33, 548-550 (2008).
    [CrossRef]
  9. J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30, 3269-3271 (2005).
    [CrossRef]
  10. X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, “All fused-silica miniature optical fiber tip pressure sensor,” Opt. Lett. 31, 885-887 (2006).
    [CrossRef] [PubMed]
  11. K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. Microeng. 12, 1-6 (2002).
    [CrossRef]
  12. www.fiso.com, FISO Technologies Inc., 500 St. Jean Baptiste Ave., Quebec, Canada.
  13. V. Zamora, A. Diez, M. V. Andres, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillaries,” Opt. Express 15, 12011-12015 (2007).
    [CrossRef] [PubMed]
  14. P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88, 093513 (2006).
    [CrossRef]
  15. S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, “ Microfluidic sensor based on integral optical hollow waveguides,” Opt. Lett. 29, 1894-1896 (2004).
    [CrossRef] [PubMed]
  16. E. Chow, Q. Grot, L. W. Mirkqrimi, M. Sigalas, and G. Girolami, “Compact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093-1095 (2004).
    [CrossRef] [PubMed]
  17. S. Calixto, M. Rosete-Aguilar, D. Monzon-Hernandez, and V. P. Minkovich, “Capillary refractometer integrated in a microfluidic configuration,” Appl. Opt. 47, 843-848 (2008).
    [CrossRef] [PubMed]
  18. T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A 144, 280-295 (2008).
    [CrossRef]
  19. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1, 106-114(2007).
    [CrossRef]
  20. J. Fraden, Handbook of Modern Sensors: Physics, Designs and Applications (Springer-Verlag, 1996).
  21. M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).
  22. N. Sugiura and S. Morita,“Variable-focus liquid-filled optical lens,” Appl. Opt. 32, 4181-4186 (1993).
    [CrossRef] [PubMed]
  23. A. H. Rawicz and I. Mikhailenko, “Modeling a variable-focus liquid filled optical lens,” Appl. Opt. 35, 1587-1589(1996).
    [CrossRef] [PubMed]
  24. Silastic T-2, Dow Corning Corp., South Saginaw Road, Midland, Michigan 48686, USA.
  25. H. M. Smith, ed., Holographic Recording Materials (Springer-Verlag, 1977).
  26. D.Malacara, ed., Optical Shop Testing (Wiley, 1978), Chap. 11.

2008 (3)

2007 (2)

2006 (2)

X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, “All fused-silica miniature optical fiber tip pressure sensor,” Opt. Lett. 31, 885-887 (2006).
[CrossRef] [PubMed]

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

2005 (2)

2004 (3)

2002 (1)

K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. Microeng. 12, 1-6 (2002).
[CrossRef]

2000 (2)

A. B. Meinel and M. P. Meinel, “Inflatable membrane mirrors for opical passband imagery,” Opt. Eng. 39, 541-550 (2000).
[CrossRef]

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157-170 (2000).
[CrossRef]

1996 (1)

1993 (1)

1992 (1)

E. F. Borra, “The case for a liquid mirror in a lunar-based telescope,” Astrophys. J. 392, 375-383 (1992).
[CrossRef]

1991 (1)

E. F. Borra, “The case for liquid mirrors in orbiting telescopes,” Astrophys. J. 373, 317-321 (1991).
[CrossRef]

Akhzar-Mehr, O.

Andres, M. V.

Bernini, R.

Borra, E. F.

E. F. Borra, “The case for a liquid mirror in a lunar-based telescope,” Astrophys. J. 392, 375-383 (1992).
[CrossRef]

Borra, E. F.

E. F. Borra, “The case for liquid mirrors in orbiting telescopes,” Astrophys. J. 373, 317-321 (1991).
[CrossRef]

Calixto, S.

Campopiano, S.

Cau, S. F.

Chow, E.

Commander, L. G.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157-170 (2000).
[CrossRef]

Cooper, K. L.

Cronin-Golomb, M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Day, S. E.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157-170 (2000).
[CrossRef]

Diez, A.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1, 106-114(2007).
[CrossRef]

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1, 106-114(2007).
[CrossRef]

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Gimeno, B.

Girolami, G.

Grattan, K. T. V.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A 144, 280-295 (2008).
[CrossRef]

Grot, Q.

Hanada, K.

K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. Microeng. 12, 1-6 (2002).
[CrossRef]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130(2004).
[CrossRef]

Hosokawa, K.

K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. Microeng. 12, 1-6 (2002).
[CrossRef]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130(2004).
[CrossRef]

Lee, F.

Littler, I. C. M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Maeda, R.

K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. Microeng. 12, 1-6 (2002).
[CrossRef]

Meinel, A. B.

A. B. Meinel and M. P. Meinel, “Inflatable membrane mirrors for opical passband imagery,” Opt. Eng. 39, 541-550 (2000).
[CrossRef]

Meinel, M. P.

A. B. Meinel and M. P. Meinel, “Inflatable membrane mirrors for opical passband imagery,” Opt. Eng. 39, 541-550 (2000).
[CrossRef]

Mikhailenko, I.

Minkovich, V. P.

Mirkqrimi, L. W.

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1, 106-114(2007).
[CrossRef]

Monzon-Hernandez, D.

Morita, S.

Rawicz, A. H.

Rosete-Aguilar, M.

Sarro, P. M.

Selviah, D. R.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157-170 (2000).
[CrossRef]

Sigalas, M.

Simonov, A. N.

Sugiura, N.

Sun, T.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A 144, 280-295 (2008).
[CrossRef]

Vdovin, G.

Wang, A.

Wang, X.

Xu, J.

Yeo, T. L.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A 144, 280-295 (2008).
[CrossRef]

Yu, H.

Zamora, V.

Zeni, L.

Zhou, G.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130(2004).
[CrossRef]

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Astrophys. J. (2)

E. F. Borra, “The case for liquid mirrors in orbiting telescopes,” Astrophys. J. 373, 317-321 (1991).
[CrossRef]

E. F. Borra, “The case for a liquid mirror in a lunar-based telescope,” Astrophys. J. 392, 375-383 (1992).
[CrossRef]

J. Micromech. Microeng. (1)

K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. Microeng. 12, 1-6 (2002).
[CrossRef]

Nat. Photonics (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1, 106-114(2007).
[CrossRef]

Opt. Commun. (1)

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157-170 (2000).
[CrossRef]

Opt. Eng. (1)

A. B. Meinel and M. P. Meinel, “Inflatable membrane mirrors for opical passband imagery,” Opt. Eng. 39, 541-550 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Sens. Actuators A (1)

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A 144, 280-295 (2008).
[CrossRef]

Other (7)

www.fiso.com, FISO Technologies Inc., 500 St. Jean Baptiste Ave., Quebec, Canada.

www.varioptic.com. The site describes a liquid lens based on the electrowetting phenomenon.

J. Fraden, Handbook of Modern Sensors: Physics, Designs and Applications (Springer-Verlag, 1996).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

Silastic T-2, Dow Corning Corp., South Saginaw Road, Midland, Michigan 48686, USA.

H. M. Smith, ed., Holographic Recording Materials (Springer-Verlag, 1977).

D.Malacara, ed., Optical Shop Testing (Wiley, 1978), Chap. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Diagrams given by an optical design program of a plano–convex liquid-filled lens. The parameter is r 2 , the radius of the membrane–lens under pressure. The lens concavity is not to scale. Note the focusing effect.

Fig. 2
Fig. 2

(a) Theoretical profile of the liquid-filled lens for different pressures. (b) Theoretical focal length variation of the liquid-filled lens as a function of pressure.

Fig. 3
Fig. 3

(a) Diagram of the optical pressure sensor. (b) Photograph of one of the fabricated pressure sensors.

Fig. 4
Fig. 4

Interference microscope views of the surface of two membranes under pressure. (a) Lens with irregular profile and (b) lens with a profile close to a sphere.

Fig. 5
Fig. 5

Images of different objects given by a liquid-filled lens under pressure. Images were taken with a microscope. (a) Image of an illuminated pinhole ( 400 μm diameter), pressure 2.5 psi. (b) Image of an object with bars 7 cm × 1.5 cm . Object was at 1 m, pressure 1psi. (c) Image of a microscope. (d) Image of the USAF chart placed at 4 cm from the lens, pressure 2 psi.

Fig. 6
Fig. 6

Diagrams given by an optical design program. Light source at left was at 5 mm from the glass window. On the right, beam diameters are in a plane 8 mm from the membrane–lens.

Fig. 7
Fig. 7

(a) Theoretical and experimental focal distance versus pressure in the liquid-filled lens. (b) Light intensity after the liquid-filled lens versus pressure.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1 f = ( n 1 n m ) { 1 r 1 1 r 2 + ( n 1 n m ) t n 1 r 1 r 2 } ,
z = w 4 T ( a 2 r 2 ) ,
( m h 1 h ) T 3 + m w T 2 + 0.04167 w 2 a 2 = 0 ,
R = s 2 + a 2 2 s ,
I = 1.76527 + 0.52218 p 0.07273 p 2 .

Metrics