Abstract

A simple relationship is established between the linear and the circular depolarization ratios averaged over the azimuth angle of clouds made of spherical particles. The relationship is validated theoretically using double-scattering calculations; in the framework, the measurements are performed with a multiple-field-of-view lidar (MFOV) lidar. The relationship is also validated using data obtained with MFOV lidar equipped with linear and circular polarization measurement capabilities. The experimental data support theoretical results for small optical depths. At higher optical depths and large fields of view, the contribution of multiple scatterings is important; experimental data suggest that the relationship established between the linear and circular depolarization stays valid as long as the main depolarization mechanism comes from one scattering (most likely a backscattering a few degrees away from 180°).

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (66)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription