Abstract

The main applications of adaptive optics are the correction of the effects of atmospheric turbulence on ground-based telescopes and the correction of ocular aberrations in retinal imaging and visual simulation. The requirements for the wavefront corrector, usually a deformable mirror, will depend on the statistics of the aberrations to be corrected; here we compare the spatial statistics of wavefront aberrations expected in these two applications. We also use measured influence functions and numerical simulations to compare the performance of eight commercially available deformable mirrors for these tasks. The performance is studied as a function of the size of the optical pupil relative to the actuated area of the mirrors and as a function of the number of modes corrected. In the ocular case it is found that, with the exception of segmented mirrors, the performance is greatly enhanced by having a ring of actuators outside the optical pupil, as this improves the correction of the pupil edge. The effect is much smaller in the case of Kolmogorov wavefronts. It is also found that a high Strehl ratio can be obtained in the ocular case with a relatively low number of actuators if the stroke is sufficient. Increasing the number of actuators has more importance in the Kolmogorov case, even for the relatively weak turbulence considered here.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229-236 (1953).
    [CrossRef]
  2. V. P. Linnik, “On the possibility of reducting the influence of atmospheric seeing on the image quality of stars,” original 1957 article translated and reprinted in ESO Conference and Proceedings No. 48, F. Merkle, ed. (Garching, 1993), pp. 535-537.
  3. A. Buffington, F. S. Crawford, A. J. Muller, A. J. Schwemin, and R. G. Smits, “Active image restoration with a flexible mirror,” Proc. SPIE 75, 90-96 (1976).
  4. J. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998).
  5. A. W. Dreher, J. F. Bille, and R. N. Weinreb, “Active optical depth resolution improvement of the laser tomographic scanner,” Appl. Opt. 28, 804-808 (1989).
  6. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye's aberrations,” Opt. Express 8, 631-643 (2001).
  7. A. Roorda, F. Romero-Borja, W. J. Donnelly III, H. Queener, T. J. Herbert, and M. C. W. Campbell, “Adaptive optics scanning laser opthalmoscopy,” Opt. Express 10, 405-412 (2002).
  8. A. Dubra, D. C. Gray, J. I. W. Morgan, and D. R. Williams, “MEMS in adaptive optics scanning laser opthalmoscopy: achievements and challenges,” Proc. SPIE 6888, 688803(2008).
    [CrossRef]
  9. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive optics ultrahigh resolution optical coherence tomography,” Opt. Lett. 29, 2142-2144 (2004).
    [CrossRef]
  10. J. W. Evans, R. J. Zawadzki, S. Jones, S. Olivier, and J. S. Werner, “Characterization of an AO-OCT system,” in Adaptive Optics for Industry and Medicine, Proceedings of the Sixth International Workshop, National University of Ireland, Galway, C. Dainty, ed. (Imperial College Press, 2008).
  11. G. Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266-275 (2002).
    [CrossRef]
  12. E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634-S638(2002).
  13. P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refract. Surg. 33, 1721-1726 (2007).
    [CrossRef]
  14. K. M. Rocha, L. Vabre, F. Harms, N. Chateau, and R. R. Krueger, “Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology,” J. Refract. Surg. 23, 953-959 (2007).
  15. E. Dalimier, C. Dainty, and J. L. Barbur, “Effects of higher-order aberrations on contrast acuity as a function of light level,” J. Mod. Opt. 55, 791-803 (2008).
    [CrossRef]
  16. J. Liang, D. R. Williams, and D. T. Miller, “Supernornal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884-2892 (1997).
    [CrossRef]
  17. E. J. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056-1069 (2003).
  18. S. A. Cornelissen, P. A. Bierden, and T. G. Bifano, “A 4096 element continuous facesheet MEMS deformable mirror for high-contrast imaging,” Proc. SPIE 6888, 68880V (2008).
    [CrossRef]
  19. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537-1539 (2002).
    [CrossRef]
  20. M. A. Helmbrecht, T. Juneau, M. Hart, and N. Doble, “Performance of a high-stroke, segmented MEMS deformable-mirror technology,” Proc. SPIE 6113, 61130L (2006).
    [CrossRef]
  21. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225-238 (2004).
    [CrossRef]
  22. E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazˆay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: application in the human eye,” Opt. Express 14, 8900-8916 (2006).
    [CrossRef]
  23. N. Devaney, D. Coburn, C. Coleman, J. C. Dainty, E. Dalimier, T. Farrell, D. Lara, D. Mackey, and R. Mackey, “Characterization of MEMs mirrors for use in atmospheric and ocular wavefront correction,” Proc. SPIE 6888, 688802 (2008).
    [CrossRef]
  24. T. Farrell, E. Daly, E. Dalimier, and C. Dainty, “Task-based assessment of deformable mirrors,” Proc. SPIE 6467, 64670F(2007).
    [CrossRef]
  25. E. Daly, E. Dalimier, and C. Dainty, “Requirements for MEMS Mirrors for Adaptive Optics in the Eye,” Proc. SPIE 6113, 611309 (2006).
    [CrossRef]
  26. E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13, 4275-4285 (2005).
    [CrossRef]
  27. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24, 2157-2174 (2007).
    [CrossRef]
  28. J. A. Díaz, C. Pizarro, and J. Arasa, “A single dispersive GRIN profile for the aging human lens,” J. Opt. Soc. Am. A 25, 250-261 (2008).
    [CrossRef]
  29. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics (North Holland, 1981), Vol 19, pp. 281-376.
  30. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372-1379 (1966).
    [CrossRef]
  31. F. Roddier, “The problematic of adaptive optics design,” in Adaptive Optics for Astronomy, D.M.Allon and J.-M.Mariotti, eds., NATO ASI Series C: Mathematical and Physical Sciences (Springer, 1993), Vol 324, pp. 89-111.
  32. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207-211 (1976).
    [CrossRef]
  33. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1959).
  34. American National Standards Institute (ANSI), “American National Standard for ophthalmics--methods for reporting optical aberrations of eyes,” ANSI Z80.28 (ANSI, 2004).
  35. J. Y. Wang and J. K. Markey, “Modal compensation of atmospheric turbulence phase distortion,” J. Opt. Soc. Am. 68, 77-87 (1978).
  36. G.-M. Dai, “Modal compensation of atmospheric turbulence with the use of Zernike polynomials and Karhunen-Loève functions,” J. Opt. Soc. Am. A 12, 2182-2193 (1995).
    [CrossRef]
  37. R. Hudgin, “Wave-front compensation error due to finite corrector-element size,” J. Opt. Soc. Am. 67, 393-395(1977).
    [CrossRef]
  38. R. Conan, “Mean-square residual error of a wavefront after propagation through atmospheric turbulence and after correction with Zernike polynomials,” J. Opt. Soc. Am. A 25, 526-536 (2008).
    [CrossRef]
  39. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793-1803 (2001).
    [CrossRef]
  40. J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wavefront aberration statistics in a normal young population,” Vision Res. 42, 1611-1617 (2002).
    [CrossRef]
  41. T. Nirmaier, G. Pudasaini, and J. Bille, “Very fast wave-front measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor,” Opt. Express 11, 2704-2716 (2003).
  42. L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthal. Physiol. Opt. 22, 427-433 (2002).
    [CrossRef]
  43. D. T. Miller, L. N. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275-289 (2005).
    [CrossRef]
  44. M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, “Statistical description of wavefront aberration in the human eye,” Opt. Lett. 27, 37-39 (2002).
    [CrossRef]
  45. G. Vdovin and P. M. Sarro, “Flexible mirror micromachined in silicon,” Appl. Opt. 34, 2968-2972 (1995).
  46. D. A. Horsley, H. Park, S. P. Laut, and J. S. Werner, “Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry,” Proc. SPIE 5688, 133-144 (2005).
    [CrossRef]
  47. T. G. Bifano, J. Perreault, R. Krishnamoorthy Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” IEEE J. Select Top. Quantum Electron. 5, 83-89 (1999).
    [CrossRef]
  48. C. Paterson, I. Munro, and J. C. Dainty, “A low cost adaptive optics system using a membrane mirror,” Opt. Express 6, 175-185 (2000).
  49. G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (mems) deformable mirrors,” Opt. Commun. 271, 278-284 (2007).
    [CrossRef]
  50. S.Bonora and L. Poletto, “Push--pull membrane mirrors for adaptive optics,” Opt. Express 14, 11935-11944 (2006).
    [CrossRef]
  51. N. Doble, D. T. Miller, G. Yoon, and D. R. Williams, “Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes,” Appl. Opt. 46, 4501-4514 (2007).
    [CrossRef]
  52. G. Vdovin, O. Soloviev, A. Samokhin, and M. Loktev, “Correction of low order aberrations using continuous deformable mirrors,” Opt. Express 16, 2859-2866 (2008).
    [CrossRef]
  53. C. M. Harding, R. A. Johnston, and R. Lane, “Fast simulation of a Kolmogorov phase screen,” Appl. Opt. 38, 2161-2170(1999).
    [CrossRef]
  54. R. Conan, C. Bradley, P. Hampton, O. Keskin, A. Hilton, and C. Blain, “Distributed modal command for a two-deformable-mirror adaptive optics system,” Appl. Opt. 46, 4329-4340(2007).
    [CrossRef]

2008 (7)

E. Dalimier, C. Dainty, and J. L. Barbur, “Effects of higher-order aberrations on contrast acuity as a function of light level,” J. Mod. Opt. 55, 791-803 (2008).
[CrossRef]

A. Dubra, D. C. Gray, J. I. W. Morgan, and D. R. Williams, “MEMS in adaptive optics scanning laser opthalmoscopy: achievements and challenges,” Proc. SPIE 6888, 688803(2008).
[CrossRef]

S. A. Cornelissen, P. A. Bierden, and T. G. Bifano, “A 4096 element continuous facesheet MEMS deformable mirror for high-contrast imaging,” Proc. SPIE 6888, 68880V (2008).
[CrossRef]

N. Devaney, D. Coburn, C. Coleman, J. C. Dainty, E. Dalimier, T. Farrell, D. Lara, D. Mackey, and R. Mackey, “Characterization of MEMs mirrors for use in atmospheric and ocular wavefront correction,” Proc. SPIE 6888, 688802 (2008).
[CrossRef]

J. A. Díaz, C. Pizarro, and J. Arasa, “A single dispersive GRIN profile for the aging human lens,” J. Opt. Soc. Am. A 25, 250-261 (2008).
[CrossRef]

R. Conan, “Mean-square residual error of a wavefront after propagation through atmospheric turbulence and after correction with Zernike polynomials,” J. Opt. Soc. Am. A 25, 526-536 (2008).
[CrossRef]

G. Vdovin, O. Soloviev, A. Samokhin, and M. Loktev, “Correction of low order aberrations using continuous deformable mirrors,” Opt. Express 16, 2859-2866 (2008).
[CrossRef]

2007 (7)

R. Conan, C. Bradley, P. Hampton, O. Keskin, A. Hilton, and C. Blain, “Distributed modal command for a two-deformable-mirror adaptive optics system,” Appl. Opt. 46, 4329-4340(2007).
[CrossRef]

N. Doble, D. T. Miller, G. Yoon, and D. R. Williams, “Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes,” Appl. Opt. 46, 4501-4514 (2007).
[CrossRef]

A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24, 2157-2174 (2007).
[CrossRef]

T. Farrell, E. Daly, E. Dalimier, and C. Dainty, “Task-based assessment of deformable mirrors,” Proc. SPIE 6467, 64670F(2007).
[CrossRef]

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refract. Surg. 33, 1721-1726 (2007).
[CrossRef]

K. M. Rocha, L. Vabre, F. Harms, N. Chateau, and R. R. Krueger, “Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology,” J. Refract. Surg. 23, 953-959 (2007).

G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (mems) deformable mirrors,” Opt. Commun. 271, 278-284 (2007).
[CrossRef]

2006 (4)

E. Daly, E. Dalimier, and C. Dainty, “Requirements for MEMS Mirrors for Adaptive Optics in the Eye,” Proc. SPIE 6113, 611309 (2006).
[CrossRef]

M. A. Helmbrecht, T. Juneau, M. Hart, and N. Doble, “Performance of a high-stroke, segmented MEMS deformable-mirror technology,” Proc. SPIE 6113, 61130L (2006).
[CrossRef]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazˆay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: application in the human eye,” Opt. Express 14, 8900-8916 (2006).
[CrossRef]

S.Bonora and L. Poletto, “Push--pull membrane mirrors for adaptive optics,” Opt. Express 14, 11935-11944 (2006).
[CrossRef]

2005 (3)

2004 (2)

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225-238 (2004).
[CrossRef]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive optics ultrahigh resolution optical coherence tomography,” Opt. Lett. 29, 2142-2144 (2004).
[CrossRef]

2003 (2)

2002 (7)

2001 (2)

2000 (1)

1999 (2)

C. M. Harding, R. A. Johnston, and R. Lane, “Fast simulation of a Kolmogorov phase screen,” Appl. Opt. 38, 2161-2170(1999).
[CrossRef]

T. G. Bifano, J. Perreault, R. Krishnamoorthy Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” IEEE J. Select Top. Quantum Electron. 5, 83-89 (1999).
[CrossRef]

1997 (1)

1995 (2)

1989 (1)

1978 (1)

J. Y. Wang and J. K. Markey, “Modal compensation of atmospheric turbulence phase distortion,” J. Opt. Soc. Am. 68, 77-87 (1978).

1977 (1)

1976 (2)

A. Buffington, F. S. Crawford, A. J. Muller, A. J. Schwemin, and R. G. Smits, “Active image restoration with a flexible mirror,” Proc. SPIE 75, 90-96 (1976).

R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207-211 (1976).
[CrossRef]

1966 (1)

1953 (1)

H. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229-236 (1953).
[CrossRef]

Arasa, J.

Artal, P.

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refract. Surg. 33, 1721-1726 (2007).
[CrossRef]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive optics ultrahigh resolution optical coherence tomography,” Opt. Lett. 29, 2142-2144 (2004).
[CrossRef]

E. J. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056-1069 (2003).

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634-S638(2002).

M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, “Statistical description of wavefront aberration in the human eye,” Opt. Lett. 27, 37-39 (2002).
[CrossRef]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wavefront aberration statistics in a normal young population,” Vision Res. 42, 1611-1617 (2002).
[CrossRef]

Babcock, H.

H. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229-236 (1953).
[CrossRef]

Barbur, J. L.

E. Dalimier, C. Dainty, and J. L. Barbur, “Effects of higher-order aberrations on contrast acuity as a function of light level,” J. Mod. Opt. 55, 791-803 (2008).
[CrossRef]

Benito, A.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wavefront aberration statistics in a normal young population,” Vision Res. 42, 1611-1617 (2002).
[CrossRef]

Bierden, P.

Bierden, P. A.

S. A. Cornelissen, P. A. Bierden, and T. G. Bifano, “A 4096 element continuous facesheet MEMS deformable mirror for high-contrast imaging,” Proc. SPIE 6888, 68880V (2008).
[CrossRef]

Bifano, T. G.

S. A. Cornelissen, P. A. Bierden, and T. G. Bifano, “A 4096 element continuous facesheet MEMS deformable mirror for high-contrast imaging,” Proc. SPIE 6888, 68880V (2008).
[CrossRef]

T. G. Bifano, J. Perreault, R. Krishnamoorthy Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” IEEE J. Select Top. Quantum Electron. 5, 83-89 (1999).
[CrossRef]

Bille, J.

Bille, J. F.

Blain, C.

Bonora, S.

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1959).

Bradley, A.

L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthal. Physiol. Opt. 22, 427-433 (2002).
[CrossRef]

Bradley, C.

Buffington, A.

A. Buffington, F. S. Crawford, A. J. Muller, A. J. Schwemin, and R. G. Smits, “Active image restoration with a flexible mirror,” Proc. SPIE 75, 90-96 (1976).

Cagigal, M. P.

Campbell, M. C. W.

Canales, V. F.

Castejón-Mochón, J. F.

M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, “Statistical description of wavefront aberration in the human eye,” Opt. Lett. 27, 37-39 (2002).
[CrossRef]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wavefront aberration statistics in a normal young population,” Vision Res. 42, 1611-1617 (2002).
[CrossRef]

Chateau, N.

K. M. Rocha, L. Vabre, F. Harms, N. Chateau, and R. R. Krueger, “Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology,” J. Refract. Surg. 23, 953-959 (2007).

Chen, L.

Coburn, D.

N. Devaney, D. Coburn, C. Coleman, J. C. Dainty, E. Dalimier, T. Farrell, D. Lara, D. Mackey, and R. Mackey, “Characterization of MEMs mirrors for use in atmospheric and ocular wavefront correction,” Proc. SPIE 6888, 688802 (2008).
[CrossRef]

Coleman, C.

N. Devaney, D. Coburn, C. Coleman, J. C. Dainty, E. Dalimier, T. Farrell, D. Lara, D. Mackey, and R. Mackey, “Characterization of MEMs mirrors for use in atmospheric and ocular wavefront correction,” Proc. SPIE 6888, 688802 (2008).
[CrossRef]

Conan, R.

Cornelissen, S. A.

S. A. Cornelissen, P. A. Bierden, and T. G. Bifano, “A 4096 element continuous facesheet MEMS deformable mirror for high-contrast imaging,” Proc. SPIE 6888, 68880V (2008).
[CrossRef]

Cox, I. G.

Crawford, F. S.

A. Buffington, F. S. Crawford, A. J. Muller, A. J. Schwemin, and R. G. Smits, “Active image restoration with a flexible mirror,” Proc. SPIE 75, 90-96 (1976).

Dai, G.-M.

Dainty, C.

E. Dalimier, C. Dainty, and J. L. Barbur, “Effects of higher-order aberrations on contrast acuity as a function of light level,” J. Mod. Opt. 55, 791-803 (2008).
[CrossRef]

T. Farrell, E. Daly, E. Dalimier, and C. Dainty, “Task-based assessment of deformable mirrors,” Proc. SPIE 6467, 64670F(2007).
[CrossRef]

A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24, 2157-2174 (2007).
[CrossRef]

E. Daly, E. Dalimier, and C. Dainty, “Requirements for MEMS Mirrors for Adaptive Optics in the Eye,” Proc. SPIE 6113, 611309 (2006).
[CrossRef]

E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13, 4275-4285 (2005).
[CrossRef]

Dainty, J. C.

N. Devaney, D. Coburn, C. Coleman, J. C. Dainty, E. Dalimier, T. Farrell, D. Lara, D. Mackey, and R. Mackey, “Characterization of MEMs mirrors for use in atmospheric and ocular wavefront correction,” Proc. SPIE 6888, 688802 (2008).
[CrossRef]

C. Paterson, I. Munro, and J. C. Dainty, “A low cost adaptive optics system using a membrane mirror,” Opt. Express 6, 175-185 (2000).

Dalimier, E.

N. Devaney, D. Coburn, C. Coleman, J. C. Dainty, E. Dalimier, T. Farrell, D. Lara, D. Mackey, and R. Mackey, “Characterization of MEMs mirrors for use in atmospheric and ocular wavefront correction,” Proc. SPIE 6888, 688802 (2008).
[CrossRef]

E. Dalimier, C. Dainty, and J. L. Barbur, “Effects of higher-order aberrations on contrast acuity as a function of light level,” J. Mod. Opt. 55, 791-803 (2008).
[CrossRef]

T. Farrell, E. Daly, E. Dalimier, and C. Dainty, “Task-based assessment of deformable mirrors,” Proc. SPIE 6467, 64670F(2007).
[CrossRef]

E. Daly, E. Dalimier, and C. Dainty, “Requirements for MEMS Mirrors for Adaptive Optics in the Eye,” Proc. SPIE 6113, 611309 (2006).
[CrossRef]

E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13, 4275-4285 (2005).
[CrossRef]

Daly, E.

T. Farrell, E. Daly, E. Dalimier, and C. Dainty, “Task-based assessment of deformable mirrors,” Proc. SPIE 6467, 64670F(2007).
[CrossRef]

E. Daly, E. Dalimier, and C. Dainty, “Requirements for MEMS Mirrors for Adaptive Optics in the Eye,” Proc. SPIE 6113, 611309 (2006).
[CrossRef]

Devaney, N.

N. Devaney, D. Coburn, C. Coleman, J. C. Dainty, E. Dalimier, T. Farrell, D. Lara, D. Mackey, and R. Mackey, “Characterization of MEMs mirrors for use in atmospheric and ocular wavefront correction,” Proc. SPIE 6888, 688802 (2008).
[CrossRef]

Díaz, J. A.

Doble, N.

Donnelly, W. J.

Dreher, A. W.

Drexler, W.

Dubra, A.

A. Dubra, D. C. Gray, J. I. W. Morgan, and D. R. Williams, “MEMS in adaptive optics scanning laser opthalmoscopy: achievements and challenges,” Proc. SPIE 6888, 688803(2008).
[CrossRef]

Evans, J. W.

J. W. Evans, R. J. Zawadzki, S. Jones, S. Olivier, and J. S. Werner, “Characterization of an AO-OCT system,” in Adaptive Optics for Industry and Medicine, Proceedings of the Sixth International Workshop, National University of Ireland, Galway, C. Dainty, ed. (Imperial College Press, 2008).

Farrell, T.

N. Devaney, D. Coburn, C. Coleman, J. C. Dainty, E. Dalimier, T. Farrell, D. Lara, D. Mackey, and R. Mackey, “Characterization of MEMs mirrors for use in atmospheric and ocular wavefront correction,” Proc. SPIE 6888, 688802 (2008).
[CrossRef]

T. Farrell, E. Daly, E. Dalimier, and C. Dainty, “Task-based assessment of deformable mirrors,” Proc. SPIE 6467, 64670F(2007).
[CrossRef]

Fercher, A. F.

Fernández, E. J.

Fried, D. L.

Gendron, E.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Glanc, M.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Goncharov, A. V.

Gorceix, N.

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refract. Surg. 33, 1721-1726 (2007).
[CrossRef]

Gray, D. C.

A. Dubra, D. C. Gray, J. I. W. Morgan, and D. R. Williams, “MEMS in adaptive optics scanning laser opthalmoscopy: achievements and challenges,” Proc. SPIE 6888, 688803(2008).
[CrossRef]

Guirao, A.

Hampton, P.

Harding, C. M.

Hardy, J.

J. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998).

Harms, F.

K. M. Rocha, L. Vabre, F. Harms, N. Chateau, and R. R. Krueger, “Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology,” J. Refract. Surg. 23, 953-959 (2007).

Hart, M.

M. A. Helmbrecht, T. Juneau, M. Hart, and N. Doble, “Performance of a high-stroke, segmented MEMS deformable-mirror technology,” Proc. SPIE 6113, 61130L (2006).
[CrossRef]

Helmbrecht, M. A.

M. A. Helmbrecht, T. Juneau, M. Hart, and N. Doble, “Performance of a high-stroke, segmented MEMS deformable-mirror technology,” Proc. SPIE 6113, 61130L (2006).
[CrossRef]

Herbert, T. J.

Hermann, B.

Hilton, A.

Hofer, H.

Hong, X.

D. T. Miller, L. N. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275-289 (2005).
[CrossRef]

L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthal. Physiol. Opt. 22, 427-433 (2002).
[CrossRef]

Horenstein, M. N.

T. G. Bifano, J. Perreault, R. Krishnamoorthy Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” IEEE J. Select Top. Quantum Electron. 5, 83-89 (1999).
[CrossRef]

Horsley, D. A.

D. A. Horsley, H. Park, S. P. Laut, and J. S. Werner, “Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry,” Proc. SPIE 5688, 133-144 (2005).
[CrossRef]

Hudgin, R.

Johnston, R. A.

Jones, S.

J. W. Evans, R. J. Zawadzki, S. Jones, S. Olivier, and J. S. Werner, “Characterization of an AO-OCT system,” in Adaptive Optics for Industry and Medicine, Proceedings of the Sixth International Workshop, National University of Ireland, Galway, C. Dainty, ed. (Imperial College Press, 2008).

Juneau, T.

M. A. Helmbrecht, T. Juneau, M. Hart, and N. Doble, “Performance of a high-stroke, segmented MEMS deformable-mirror technology,” Proc. SPIE 6113, 61130L (2006).
[CrossRef]

Kennedy, G. T.

G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (mems) deformable mirrors,” Opt. Commun. 271, 278-284 (2007).
[CrossRef]

Keskin, O.

Krueger, R. R.

K. M. Rocha, L. Vabre, F. Harms, N. Chateau, and R. R. Krueger, “Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology,” J. Refract. Surg. 23, 953-959 (2007).

Lacombe, F.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Lafaille, D.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Lane, R.

Lara, D.

N. Devaney, D. Coburn, C. Coleman, J. C. Dainty, E. Dalimier, T. Farrell, D. Lara, D. Mackey, and R. Mackey, “Characterization of MEMs mirrors for use in atmospheric and ocular wavefront correction,” Proc. SPIE 6888, 688802 (2008).
[CrossRef]

Laut, S. P.

D. A. Horsley, H. Park, S. P. Laut, and J. S. Werner, “Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry,” Proc. SPIE 5688, 133-144 (2005).
[CrossRef]

Le Gargasson, J.-F.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Léna, P.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Liang, J.

Linnik, V. P.

V. P. Linnik, “On the possibility of reducting the influence of atmospheric seeing on the image quality of stars,” original 1957 article translated and reprinted in ESO Conference and Proceedings No. 48, F. Merkle, ed. (Garching, 1993), pp. 535-537.

Loktev, M.

López-Gil, N.

M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, “Statistical description of wavefront aberration in the human eye,” Opt. Lett. 27, 37-39 (2002).
[CrossRef]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wavefront aberration statistics in a normal young population,” Vision Res. 42, 1611-1617 (2002).
[CrossRef]

Mackey, D.

N. Devaney, D. Coburn, C. Coleman, J. C. Dainty, E. Dalimier, T. Farrell, D. Lara, D. Mackey, and R. Mackey, “Characterization of MEMs mirrors for use in atmospheric and ocular wavefront correction,” Proc. SPIE 6888, 688802 (2008).
[CrossRef]

Mackey, R.

N. Devaney, D. Coburn, C. Coleman, J. C. Dainty, E. Dalimier, T. Farrell, D. Lara, D. Mackey, and R. Mackey, “Characterization of MEMs mirrors for use in atmospheric and ocular wavefront correction,” Proc. SPIE 6888, 688802 (2008).
[CrossRef]

Mali, R. Krishnamoorthy

T. G. Bifano, J. Perreault, R. Krishnamoorthy Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” IEEE J. Select Top. Quantum Electron. 5, 83-89 (1999).
[CrossRef]

Manzanera, S.

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refract. Surg. 33, 1721-1726 (2007).
[CrossRef]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634-S638(2002).

Markey, J. K.

J. Y. Wang and J. K. Markey, “Modal compensation of atmospheric turbulence phase distortion,” J. Opt. Soc. Am. 68, 77-87 (1978).

Miller, D. T.

Morgan, J. I. W.

A. Dubra, D. C. Gray, J. I. W. Morgan, and D. R. Williams, “MEMS in adaptive optics scanning laser opthalmoscopy: achievements and challenges,” Proc. SPIE 6888, 688803(2008).
[CrossRef]

Muller, A. J.

A. Buffington, F. S. Crawford, A. J. Muller, A. J. Schwemin, and R. G. Smits, “Active image restoration with a flexible mirror,” Proc. SPIE 75, 90-96 (1976).

Munro, I.

Nirmaier, T.

Noll, R. J.

Olivier, S.

N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537-1539 (2002).
[CrossRef]

J. W. Evans, R. J. Zawadzki, S. Jones, S. Olivier, and J. S. Werner, “Characterization of an AO-OCT system,” in Adaptive Optics for Industry and Medicine, Proceedings of the Sixth International Workshop, National University of Ireland, Galway, C. Dainty, ed. (Imperial College Press, 2008).

Park, H.

D. A. Horsley, H. Park, S. P. Laut, and J. S. Werner, “Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry,” Proc. SPIE 5688, 133-144 (2005).
[CrossRef]

Paterson, C.

G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (mems) deformable mirrors,” Opt. Commun. 271, 278-284 (2007).
[CrossRef]

C. Paterson, I. Munro, and J. C. Dainty, “A low cost adaptive optics system using a membrane mirror,” Opt. Express 6, 175-185 (2000).

Perreault, J.

T. G. Bifano, J. Perreault, R. Krishnamoorthy Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” IEEE J. Select Top. Quantum Electron. 5, 83-89 (1999).
[CrossRef]

Piers, P.

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634-S638(2002).

Piers, P. A.

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refract. Surg. 33, 1721-1726 (2007).
[CrossRef]

Pizarro, C.

Poletto, L.

Porter, J.

Povazˆay, B.

Prieto, P. M.

Pudasaini, G.

Queener, H.

Rocha, K. M.

K. M. Rocha, L. Vabre, F. Harms, N. Chateau, and R. R. Krueger, “Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology,” J. Refract. Surg. 23, 953-959 (2007).

Roddier, F.

F. Roddier, “The problematic of adaptive optics design,” in Adaptive Optics for Astronomy, D.M.Allon and J.-M.Mariotti, eds., NATO ASI Series C: Mathematical and Physical Sciences (Springer, 1993), Vol 324, pp. 89-111.

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics (North Holland, 1981), Vol 19, pp. 281-376.

Romero-Borja, F.

Roorda, A.

Samokhin, A.

Sarro, P. M.

Sattmann, H.

Schwemin, A. J.

A. Buffington, F. S. Crawford, A. J. Muller, A. J. Schwemin, and R. G. Smits, “Active image restoration with a flexible mirror,” Proc. SPIE 75, 90-96 (1976).

Singer, B.

Smits, R. G.

A. Buffington, F. S. Crawford, A. J. Muller, A. J. Schwemin, and R. G. Smits, “Active image restoration with a flexible mirror,” Proc. SPIE 75, 90-96 (1976).

Soloviev, O.

Thibos, L. N.

D. T. Miller, L. N. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275-289 (2005).
[CrossRef]

L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthal. Physiol. Opt. 22, 427-433 (2002).
[CrossRef]

Unterhuber, A.

Vabre, L.

K. M. Rocha, L. Vabre, F. Harms, N. Chateau, and R. R. Krueger, “Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology,” J. Refract. Surg. 23, 953-959 (2007).

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazˆay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: application in the human eye,” Opt. Express 14, 8900-8916 (2006).
[CrossRef]

Vdovin, G.

Wang, J. Y.

J. Y. Wang and J. K. Markey, “Modal compensation of atmospheric turbulence phase distortion,” J. Opt. Soc. Am. 68, 77-87 (1978).

Weinreb, R. N.

Werner, J. S.

D. A. Horsley, H. Park, S. P. Laut, and J. S. Werner, “Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry,” Proc. SPIE 5688, 133-144 (2005).
[CrossRef]

J. W. Evans, R. J. Zawadzki, S. Jones, S. Olivier, and J. S. Werner, “Characterization of an AO-OCT system,” in Adaptive Optics for Industry and Medicine, Proceedings of the Sixth International Workshop, National University of Ireland, Galway, C. Dainty, ed. (Imperial College Press, 2008).

Williams, D. R.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1959).

Yamauchi, Y.

Yoon, G.

Yoon, G. Y.

Zawadzki, R. J.

J. W. Evans, R. J. Zawadzki, S. Jones, S. Olivier, and J. S. Werner, “Characterization of an AO-OCT system,” in Adaptive Optics for Industry and Medicine, Proceedings of the Sixth International Workshop, National University of Ireland, Galway, C. Dainty, ed. (Imperial College Press, 2008).

Appl. Opt. (5)

IEEE J. Select Top. Quantum Electron. (1)

T. G. Bifano, J. Perreault, R. Krishnamoorthy Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” IEEE J. Select Top. Quantum Electron. 5, 83-89 (1999).
[CrossRef]

J. Cataract Refract. Surg. (1)

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refract. Surg. 33, 1721-1726 (2007).
[CrossRef]

J. Mod. Opt. (1)

E. Dalimier, C. Dainty, and J. L. Barbur, “Effects of higher-order aberrations on contrast acuity as a function of light level,” J. Mod. Opt. 55, 791-803 (2008).
[CrossRef]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (7)

J. Refract. Surg. (2)

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634-S638(2002).

K. M. Rocha, L. Vabre, F. Harms, N. Chateau, and R. R. Krueger, “Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology,” J. Refract. Surg. 23, 953-959 (2007).

Ophthal. Physiol. Opt. (1)

L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthal. Physiol. Opt. 22, 427-433 (2002).
[CrossRef]

Opt. Commun. (2)

G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (mems) deformable mirrors,” Opt. Commun. 271, 278-284 (2007).
[CrossRef]

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Opt. Express (10)

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye's aberrations,” Opt. Express 8, 631-643 (2001).

C. Paterson, I. Munro, and J. C. Dainty, “A low cost adaptive optics system using a membrane mirror,” Opt. Express 6, 175-185 (2000).

G. Vdovin, O. Soloviev, A. Samokhin, and M. Loktev, “Correction of low order aberrations using continuous deformable mirrors,” Opt. Express 16, 2859-2866 (2008).
[CrossRef]

A. Roorda, F. Romero-Borja, W. J. Donnelly III, H. Queener, T. J. Herbert, and M. C. W. Campbell, “Adaptive optics scanning laser opthalmoscopy,” Opt. Express 10, 405-412 (2002).

E. J. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056-1069 (2003).

T. Nirmaier, G. Pudasaini, and J. Bille, “Very fast wave-front measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor,” Opt. Express 11, 2704-2716 (2003).

D. T. Miller, L. N. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275-289 (2005).
[CrossRef]

E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13, 4275-4285 (2005).
[CrossRef]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazˆay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: application in the human eye,” Opt. Express 14, 8900-8916 (2006).
[CrossRef]

S.Bonora and L. Poletto, “Push--pull membrane mirrors for adaptive optics,” Opt. Express 14, 11935-11944 (2006).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (8)

D. A. Horsley, H. Park, S. P. Laut, and J. S. Werner, “Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry,” Proc. SPIE 5688, 133-144 (2005).
[CrossRef]

S. A. Cornelissen, P. A. Bierden, and T. G. Bifano, “A 4096 element continuous facesheet MEMS deformable mirror for high-contrast imaging,” Proc. SPIE 6888, 68880V (2008).
[CrossRef]

M. A. Helmbrecht, T. Juneau, M. Hart, and N. Doble, “Performance of a high-stroke, segmented MEMS deformable-mirror technology,” Proc. SPIE 6113, 61130L (2006).
[CrossRef]

N. Devaney, D. Coburn, C. Coleman, J. C. Dainty, E. Dalimier, T. Farrell, D. Lara, D. Mackey, and R. Mackey, “Characterization of MEMs mirrors for use in atmospheric and ocular wavefront correction,” Proc. SPIE 6888, 688802 (2008).
[CrossRef]

T. Farrell, E. Daly, E. Dalimier, and C. Dainty, “Task-based assessment of deformable mirrors,” Proc. SPIE 6467, 64670F(2007).
[CrossRef]

E. Daly, E. Dalimier, and C. Dainty, “Requirements for MEMS Mirrors for Adaptive Optics in the Eye,” Proc. SPIE 6113, 611309 (2006).
[CrossRef]

A. Dubra, D. C. Gray, J. I. W. Morgan, and D. R. Williams, “MEMS in adaptive optics scanning laser opthalmoscopy: achievements and challenges,” Proc. SPIE 6888, 688803(2008).
[CrossRef]

A. Buffington, F. S. Crawford, A. J. Muller, A. J. Schwemin, and R. G. Smits, “Active image restoration with a flexible mirror,” Proc. SPIE 75, 90-96 (1976).

Publ. Astron. Soc. Pac. (1)

H. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229-236 (1953).
[CrossRef]

Vision Res. (1)

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wavefront aberration statistics in a normal young population,” Vision Res. 42, 1611-1617 (2002).
[CrossRef]

Other (7)

V. P. Linnik, “On the possibility of reducting the influence of atmospheric seeing on the image quality of stars,” original 1957 article translated and reprinted in ESO Conference and Proceedings No. 48, F. Merkle, ed. (Garching, 1993), pp. 535-537.

J. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998).

J. W. Evans, R. J. Zawadzki, S. Jones, S. Olivier, and J. S. Werner, “Characterization of an AO-OCT system,” in Adaptive Optics for Industry and Medicine, Proceedings of the Sixth International Workshop, National University of Ireland, Galway, C. Dainty, ed. (Imperial College Press, 2008).

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics (North Holland, 1981), Vol 19, pp. 281-376.

F. Roddier, “The problematic of adaptive optics design,” in Adaptive Optics for Astronomy, D.M.Allon and J.-M.Mariotti, eds., NATO ASI Series C: Mathematical and Physical Sciences (Springer, 1993), Vol 324, pp. 89-111.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1959).

American National Standards Institute (ANSI), “American National Standard for ophthalmics--methods for reporting optical aberrations of eyes,” ANSI Z80.28 (ANSI, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Zernike coefficients for decomposition of Kolmogorov turbulence (solid curve) and Thibos model 6 mm eye (dashed curve). Both curves are normalized to have a total variance of unity. Mode 12 corresponds to spherical aberration.

Fig. 2
Fig. 2

Wavefront mean for a 6 mm pupil calculated using 20,000 eyes simulated according to the Thibos model with no piston, tip, or tilt. The units are micrometers.

Fig. 3
Fig. 3

Wavefront variance for a 6 mm pupil calculated using 20,000 eyes simulated according to the Thibos model with no piston, tip, or tilt. The units are micrometers squared.

Fig. 4
Fig. 4

Wavefront variance for a 6 mm pupil calculated using 20,000 eyes simulated according to the Thibos model with the first 15 Zernike modes removed. The units are micrometers squared.

Fig. 5
Fig. 5

Performance of the OKO19_PZT as a function of mir ror aperture ratio, for 19, 17, and 15 modes used in the fitting expression.

Fig. 6
Fig. 6

Residual wavefront maps after correction of a typical ocular wavefront with the OKO19PZT: (a) using the full mirror aperture, (b) using half the diameter (units in micrometers); and projections of the pupils on the actuator layout: (c) full pupil, (d) optimized pupil.

Fig. 7
Fig. 7

Initial and optimized optical pupil superimposed on the actuator layout.

Fig. 8
Fig. 8

Performance of the mirrors in correcting ocular aberrations. (a) Mean residual wavefront error rms after the best fit given by the mirrors. (b) Mean Strehl ratio after the best fit given by the mirrors. The error bars represent ± 1 standard deviation.

Fig. 9
Fig. 9

Wavefront residuals after fitting of a typical ocular wavefront with the deformable mirrors (scale in micrometers).

Fig. 10
Fig. 10

Mean rms of the ocular wavefront residuals for each Zernike radial order: (a) initial and residual wavefronts after correction with all mirrors, (b) zoom on the residual of the five best mirrors.

Fig. 11
Fig. 11

Performance of the OKO19_PZT as a function of mirror aperture ratio, using 19, 17, and 15 modes to fit to wavefronts simulated to have Kolmogorov statistics with D / r 0 = 7.5 .

Fig. 12
Fig. 12

Performance of the mirrors in correcting atmospheric aberrations. (a) Mean residual wavefront error rms after the best fit given by the mirrors, (b) Mean Strehl ratio at λ = 2.2 μm after the best fit given by the mirrors. The error bars represent ± 1 standard deviation.

Fig. 13
Fig. 13

Mean rms of the wavefront residuals for each Zernike radial order.

Tables (3)

Tables Icon

Table 1 Characteristics of the Deformable Mirrors Studied

Tables Icon

Table 2 Optimum Aperture and Number of Modes for Each Mirror

Tables Icon

Table 3 Comparison of Residual Wavefront Error RMS for Atmospheric and Ocular Aberrations

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( r ) = i a i Z i ( r ) ,
a i a j = c i j ( D / r 0 ) 5 / 3 ,
σ 2 = α N ( D / r 0 ) 5 / 3 .
σ 2 = β ( d / r 0 ) 5 / 3 ,
Φ M = U W V T f ( V W 1 U T Φ ) ,
f ( x i ) = { x i if     x lim x i x lim x lim × x i | x i | if     x i < x lim or x i > x lim .
rms = 1 N j j ( Φ ( j ) Φ M ( j ) ) 2 ,
N r = m ( a r m ) 2 ,

Metrics