Abstract

Thermal diffusion properties of interfaces are measured using self-induced surface thermal lensing with a single laser beam. The time evolution of the reflected beam reveals information on heat diffusion away from the interface. Unambiguous correlation between measured signal and thermal diffusivity is shown, theoretically and experimentally, from which calibration curves are obtained. Being simpler and less sensitive to vibrations and misalignments, the technique offers definite advantages over standard two-beam (pump-probe) methods.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Saito, M. Irikura, M. Haraguchi, and M. Fukui, “New type of photothermal spectroscopic technique,” Appl. Opt. 31, 2047-2054 (1992).
    [CrossRef] [PubMed]
  2. E. Welsch and D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34, 7239-7253 (1995).
    [CrossRef] [PubMed]
  3. M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solid surfaces,” Appl. Phys. A 32, 141-154(1983).
    [CrossRef]
  4. M. Gugliotti, M. S. Baptista, L. G. Dias, and M. J. Politi, “Single-beam interface thermal lensing,” Appl. Opt. 38, 1213-1215 (1999).
    [CrossRef]
  5. M. Martinelli, M. Gugliotti, and R. J. Horowicz, “Measurement of refractive-index change at a liquid-solid interface close to the critical angle,” Appl. Opt. 39, 2733-2736 (2000).
    [CrossRef]
  6. D. Comeau, A. Haché, and N. Melikechi, “Reflective thermal lensing and optical measurement of thermal diffusivity in liquids,” Appl. Phys. Lett. 83, 246-248 (2003).
    [CrossRef]
  7. S. Doiron and A. Haché, “Time evolution of reflective thermal lenses and measurement of the thermal diffusivity in bulk solids,” Appl. Opt. 43, 4250-4253 (2004).
    [CrossRef] [PubMed]
  8. A. Marcano, H. Cabrera, M. Guerra, R. A. Cruz, C. Jacinto, and T. Catunda, “Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement,” J. Opt. Soc. Am. B 23, 1408-1413 (2006).
    [CrossRef]
  9. P.-K. Kuo and M. Munidasa, “Single-beam interferometry of a thermal bump,” Appl. Opt. 29, 5326-5331 (1990).
    [CrossRef] [PubMed]
  10. R. L. Landau and M. J. Paez, Computational Physics (Wiley Interscience, 1997), p. 358.
  11. I. Gerdova, Z. Zhang, and A. Haché, “Optically tunable hollow Gaussian beams,” J. Opt. Soc. Am. B 23, 1934-1937 (2006).
    [CrossRef]
  12. O. K. Bates, “Binary mixtures of water and glycerol,” Ind. Eng. Chem. 28, 494-498 (1936).
    [CrossRef]

2006 (2)

2004 (1)

2003 (1)

D. Comeau, A. Haché, and N. Melikechi, “Reflective thermal lensing and optical measurement of thermal diffusivity in liquids,” Appl. Phys. Lett. 83, 246-248 (2003).
[CrossRef]

2000 (1)

1999 (1)

1995 (1)

1992 (1)

1990 (1)

1983 (1)

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solid surfaces,” Appl. Phys. A 32, 141-154(1983).
[CrossRef]

1936 (1)

O. K. Bates, “Binary mixtures of water and glycerol,” Ind. Eng. Chem. 28, 494-498 (1936).
[CrossRef]

Amer, N. M.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solid surfaces,” Appl. Phys. A 32, 141-154(1983).
[CrossRef]

Baptista, M. S.

Bates, O. K.

O. K. Bates, “Binary mixtures of water and glycerol,” Ind. Eng. Chem. 28, 494-498 (1936).
[CrossRef]

Boccara, A. C.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solid surfaces,” Appl. Phys. A 32, 141-154(1983).
[CrossRef]

Cabrera, H.

Catunda, T.

Comeau, D.

D. Comeau, A. Haché, and N. Melikechi, “Reflective thermal lensing and optical measurement of thermal diffusivity in liquids,” Appl. Phys. Lett. 83, 246-248 (2003).
[CrossRef]

Cruz, R. A.

Dias, L. G.

Doiron, S.

Fournier, D.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solid surfaces,” Appl. Phys. A 32, 141-154(1983).
[CrossRef]

Fukui, M.

Gerdova, I.

Guerra, M.

Gugliotti, M.

Haché, A.

Haraguchi, M.

Horowicz, R. J.

Irikura, M.

Jacinto, C.

Kohn, S.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solid surfaces,” Appl. Phys. A 32, 141-154(1983).
[CrossRef]

Kuo, P.-K.

Landau, R. L.

R. L. Landau and M. J. Paez, Computational Physics (Wiley Interscience, 1997), p. 358.

Marcano, A.

Martinelli, M.

Melikechi, N.

D. Comeau, A. Haché, and N. Melikechi, “Reflective thermal lensing and optical measurement of thermal diffusivity in liquids,” Appl. Phys. Lett. 83, 246-248 (2003).
[CrossRef]

Munidasa, M.

Olmstead, M. A.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solid surfaces,” Appl. Phys. A 32, 141-154(1983).
[CrossRef]

Paez, M. J.

R. L. Landau and M. J. Paez, Computational Physics (Wiley Interscience, 1997), p. 358.

Politi, M. J.

Ristau, D.

Saito, H.

Welsch, E.

Zhang, Z.

Appl. Opt. (6)

Appl. Phys. A (1)

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solid surfaces,” Appl. Phys. A 32, 141-154(1983).
[CrossRef]

Appl. Phys. Lett. (1)

D. Comeau, A. Haché, and N. Melikechi, “Reflective thermal lensing and optical measurement of thermal diffusivity in liquids,” Appl. Phys. Lett. 83, 246-248 (2003).
[CrossRef]

Ind. Eng. Chem. (1)

O. K. Bates, “Binary mixtures of water and glycerol,” Ind. Eng. Chem. 28, 494-498 (1936).
[CrossRef]

J. Opt. Soc. Am. B (2)

Other (1)

R. L. Landau and M. J. Paez, Computational Physics (Wiley Interscience, 1997), p. 358.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Self-induced diffraction by a Gaussian beam that is partially absorbed at the interface ( z = 0 ) between two media M 1 and M 2 . Changes in beam divergence are detected in reflection by measuring beam transmission through a circular aperture. (b) Experimental layout where an externally modulated laser pumps and probes a sample, and a photodiode monitors transmission through an aperture. A differential amplifier (DA) extracts and amplifies the transient part of the signal.

Fig. 2
Fig. 2

Three-dimensional temperature profile at the interface between two media with thermal diffusivities D 1 = 5 × 10 7 and D 2 = 1 × 10 7 m 2 / s . The Gaussian laser beam has a FWHM of 30 μm and heats the interface for 10 ms .

Fig. 3
Fig. 3

Calculated transient signal of a laser beam reflected off a thermal bump and passing through an aperture. A 30 μm wide beam heats the interface separating Medium 1 with D 1 = 5 × 10 7 m 2 / s (glass) and Medium 2 with D 2 = 0.5 , 1.0, and 1.5 × 10 7 m 2 / s (Curves A, B, and C, respectively). Δ S is the change in signal from t = 0 to t .

Fig. 4
Fig. 4

Calculated slope of the transient signal at t = 0 (labeled S 0 ) and the maximum signal change (labeled Δ S ) for various thermal diffusivity of Medium 2. Medium 1 is taken to be glass ( D 1 = 5 × 10 7 m 2 / s ).

Fig. 5
Fig. 5

Transient signal measured at the interface between glass and liquids.

Fig. 6
Fig. 6

Slope at t = 0 (the time of laser turn-on) calculated from measured transient signals. Unlabeled data points are mixtures of glycerol and water with various concentrations of each.

Fig. 7
Fig. 7

Measured maximum change in transient signal. Unlabeled data points are mixtures of glycerol and water with various concentrations of each.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ρ c p T ( t , r ) t = κ 2 T ( t , r ) + Q ˙ ( t , r ) ,
ρ i c p i T ( t , r , z ) t = κ i ( 2 T ( t , r , z ) r 2 + 1 r T ( t , r , z ) r + 2 T ( t , r , z ) z 2 ) + Q ˙ ( t , r , z ) ,
Q ˙ ( t , r , 0 ) = Q ˙ o exp ( 4 ln 2 r 2 w 2 ) f ( t ) ,
Q ˙ o = 2 P ( 1 R ) π Δ z w 2 ln 2 .
S ( t ) = S o + A T ( t , 0 , 0 ) ,
E e v = ρ ( c ( T b 20 ° C ) + L e ) ,

Metrics