Abstract

Glass ampoules were always sealed by melting in the presence of a flame to create closures. Some poisonous gases were generated in this sealing process that pollute the injection drug and are physically harmful. In this study, CO2 lasers were proposed for sealing glass ampoules. Because of the clean noncontact sealing process with lasers, there was nearly no pollution of the injection drug. To study in detail the principle of this sealing process, a mathematical model was put forward, and the temperature and the thermal stress field around the ampoule’s neck were calculated by ANSYS software. Through experimental study, 1ml and 5ml ampoules were sealed successfully by a dual-laser-beam method. The results show that a laser source is an ideal heat source for sealing glass ampoules.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Jiang and B. Xu, “Study on seal pattern of ampoules,” Med. Equip. 119, 21-22 (2006).
  2. Y. Q. Li, “The discussion on technique of sealing ample,” J. Yancheng Inst. Tech. (Natural Sci.) 15, 36-375 (2002).
  3. A. D. Fredericks, “Method for sealing ampoules,” U.S. patent 3,688,812 (5 September 1972).
  4. A. Helebrant, C. Buerhop, and R. Weibmann, “Mathematical modeling of temperature distribution during CO2 laser irradiation of glass,” Glass Technol. 34, 154-158 (1993).
  5. J. F. Li, L. Li, and F. H. Stott, “Comparison of volumetric and surface heating sources in the modeling of laser melting of ceramic materials,” Int. J. Heat Mass Trans. 47, 1159-1174(2004).
    [CrossRef]
  6. Z. H. Shen, S. Y. Zhang, J. Lu, and X. W. Ni, “Mathematical modeling of laser induced heating and melting in solid,” Opt. Laser Technol. 33, 533-537 (2001).
    [CrossRef]
  7. W. X. Tian and K. S. Chiu, “Temperature prediction for CO2 laser heating of moving glass rods,” Opt. Laser Technol. 36, 131-137 (2004).
    [CrossRef]
  8. C. Y. Wei, H. B. He, Z. Deng, J. D. Shao, and Z. X. Fan, “Study of thermal behaviors in CO2 laser irradiated glass,” Opt. Eng. 44, 044202 (2005).
    [CrossRef]
  9. J. K. Jiao and X. B. Wang, “Temperature distribution of moving quartz glass heated by CO2 laser,” High Power Laser Part. Beams 19, 1-4 (2007).
  10. G. K. Chui, “Laser cutting of hot glass,” Ceram. Bull. 54, 514-518 (1975).
  11. M. Lumley, “Controlled separation of brittle materials using a laser,” Ceram. Bull. 48, 850-854 (1969).
  12. C. H. Tsai and C. S. Liou, “Fracture mechanism of laser cutting with controlled fracture,” J. Manuf. Sci. Eng. 125, 519-528 (2003).
    [CrossRef]
  13. C. H. Tsai and B. C. Lin, “Laser cutting with controlled fracture and pre-bending applied to LCD glass separation,” Int. J. Adv. Manuf. Technol. 32, 1155-1162 (2007).
    [CrossRef]
  14. H. Y. Zheng and T. Lee, “Studies of CO2 laser peeling of glass substrates,” J. Micromech. Microeng. 15, 2093-2097 (2005).
    [CrossRef]
  15. Y. Z. Wang and J. Lin, “Characterization of the laser cleaving on glass sheets with a line-shape laser beam,” Opt. Laser Technol. 39, 892-899 (2007).
    [CrossRef]
  16. J. K. Jiao and X. B. Wang, “A numerical simulation of machining glass by dual CO2-laser beams,” Opt. Laser Technol. 40, 297-301 (2008).
    [CrossRef]

2008 (1)

J. K. Jiao and X. B. Wang, “A numerical simulation of machining glass by dual CO2-laser beams,” Opt. Laser Technol. 40, 297-301 (2008).
[CrossRef]

2007 (3)

C. H. Tsai and B. C. Lin, “Laser cutting with controlled fracture and pre-bending applied to LCD glass separation,” Int. J. Adv. Manuf. Technol. 32, 1155-1162 (2007).
[CrossRef]

Y. Z. Wang and J. Lin, “Characterization of the laser cleaving on glass sheets with a line-shape laser beam,” Opt. Laser Technol. 39, 892-899 (2007).
[CrossRef]

J. K. Jiao and X. B. Wang, “Temperature distribution of moving quartz glass heated by CO2 laser,” High Power Laser Part. Beams 19, 1-4 (2007).

2006 (1)

J. M. Jiang and B. Xu, “Study on seal pattern of ampoules,” Med. Equip. 119, 21-22 (2006).

2005 (2)

C. Y. Wei, H. B. He, Z. Deng, J. D. Shao, and Z. X. Fan, “Study of thermal behaviors in CO2 laser irradiated glass,” Opt. Eng. 44, 044202 (2005).
[CrossRef]

H. Y. Zheng and T. Lee, “Studies of CO2 laser peeling of glass substrates,” J. Micromech. Microeng. 15, 2093-2097 (2005).
[CrossRef]

2004 (2)

W. X. Tian and K. S. Chiu, “Temperature prediction for CO2 laser heating of moving glass rods,” Opt. Laser Technol. 36, 131-137 (2004).
[CrossRef]

J. F. Li, L. Li, and F. H. Stott, “Comparison of volumetric and surface heating sources in the modeling of laser melting of ceramic materials,” Int. J. Heat Mass Trans. 47, 1159-1174(2004).
[CrossRef]

2003 (1)

C. H. Tsai and C. S. Liou, “Fracture mechanism of laser cutting with controlled fracture,” J. Manuf. Sci. Eng. 125, 519-528 (2003).
[CrossRef]

2002 (1)

Y. Q. Li, “The discussion on technique of sealing ample,” J. Yancheng Inst. Tech. (Natural Sci.) 15, 36-375 (2002).

2001 (1)

Z. H. Shen, S. Y. Zhang, J. Lu, and X. W. Ni, “Mathematical modeling of laser induced heating and melting in solid,” Opt. Laser Technol. 33, 533-537 (2001).
[CrossRef]

1993 (1)

A. Helebrant, C. Buerhop, and R. Weibmann, “Mathematical modeling of temperature distribution during CO2 laser irradiation of glass,” Glass Technol. 34, 154-158 (1993).

1975 (1)

G. K. Chui, “Laser cutting of hot glass,” Ceram. Bull. 54, 514-518 (1975).

1969 (1)

M. Lumley, “Controlled separation of brittle materials using a laser,” Ceram. Bull. 48, 850-854 (1969).

Buerhop, C.

A. Helebrant, C. Buerhop, and R. Weibmann, “Mathematical modeling of temperature distribution during CO2 laser irradiation of glass,” Glass Technol. 34, 154-158 (1993).

Chiu, K. S.

W. X. Tian and K. S. Chiu, “Temperature prediction for CO2 laser heating of moving glass rods,” Opt. Laser Technol. 36, 131-137 (2004).
[CrossRef]

Chui, G. K.

G. K. Chui, “Laser cutting of hot glass,” Ceram. Bull. 54, 514-518 (1975).

Deng, Z.

C. Y. Wei, H. B. He, Z. Deng, J. D. Shao, and Z. X. Fan, “Study of thermal behaviors in CO2 laser irradiated glass,” Opt. Eng. 44, 044202 (2005).
[CrossRef]

Fan, Z. X.

C. Y. Wei, H. B. He, Z. Deng, J. D. Shao, and Z. X. Fan, “Study of thermal behaviors in CO2 laser irradiated glass,” Opt. Eng. 44, 044202 (2005).
[CrossRef]

Fredericks, A. D.

A. D. Fredericks, “Method for sealing ampoules,” U.S. patent 3,688,812 (5 September 1972).

He, H. B.

C. Y. Wei, H. B. He, Z. Deng, J. D. Shao, and Z. X. Fan, “Study of thermal behaviors in CO2 laser irradiated glass,” Opt. Eng. 44, 044202 (2005).
[CrossRef]

Helebrant, A.

A. Helebrant, C. Buerhop, and R. Weibmann, “Mathematical modeling of temperature distribution during CO2 laser irradiation of glass,” Glass Technol. 34, 154-158 (1993).

Jiang, J. M.

J. M. Jiang and B. Xu, “Study on seal pattern of ampoules,” Med. Equip. 119, 21-22 (2006).

Jiao, J. K.

J. K. Jiao and X. B. Wang, “A numerical simulation of machining glass by dual CO2-laser beams,” Opt. Laser Technol. 40, 297-301 (2008).
[CrossRef]

J. K. Jiao and X. B. Wang, “Temperature distribution of moving quartz glass heated by CO2 laser,” High Power Laser Part. Beams 19, 1-4 (2007).

Lee, T.

H. Y. Zheng and T. Lee, “Studies of CO2 laser peeling of glass substrates,” J. Micromech. Microeng. 15, 2093-2097 (2005).
[CrossRef]

Li, J. F.

J. F. Li, L. Li, and F. H. Stott, “Comparison of volumetric and surface heating sources in the modeling of laser melting of ceramic materials,” Int. J. Heat Mass Trans. 47, 1159-1174(2004).
[CrossRef]

Li, L.

J. F. Li, L. Li, and F. H. Stott, “Comparison of volumetric and surface heating sources in the modeling of laser melting of ceramic materials,” Int. J. Heat Mass Trans. 47, 1159-1174(2004).
[CrossRef]

Li, Y. Q.

Y. Q. Li, “The discussion on technique of sealing ample,” J. Yancheng Inst. Tech. (Natural Sci.) 15, 36-375 (2002).

Lin, B. C.

C. H. Tsai and B. C. Lin, “Laser cutting with controlled fracture and pre-bending applied to LCD glass separation,” Int. J. Adv. Manuf. Technol. 32, 1155-1162 (2007).
[CrossRef]

Lin, J.

Y. Z. Wang and J. Lin, “Characterization of the laser cleaving on glass sheets with a line-shape laser beam,” Opt. Laser Technol. 39, 892-899 (2007).
[CrossRef]

Liou, C. S.

C. H. Tsai and C. S. Liou, “Fracture mechanism of laser cutting with controlled fracture,” J. Manuf. Sci. Eng. 125, 519-528 (2003).
[CrossRef]

Lu, J.

Z. H. Shen, S. Y. Zhang, J. Lu, and X. W. Ni, “Mathematical modeling of laser induced heating and melting in solid,” Opt. Laser Technol. 33, 533-537 (2001).
[CrossRef]

Lumley, M.

M. Lumley, “Controlled separation of brittle materials using a laser,” Ceram. Bull. 48, 850-854 (1969).

Ni, X. W.

Z. H. Shen, S. Y. Zhang, J. Lu, and X. W. Ni, “Mathematical modeling of laser induced heating and melting in solid,” Opt. Laser Technol. 33, 533-537 (2001).
[CrossRef]

Shao, J. D.

C. Y. Wei, H. B. He, Z. Deng, J. D. Shao, and Z. X. Fan, “Study of thermal behaviors in CO2 laser irradiated glass,” Opt. Eng. 44, 044202 (2005).
[CrossRef]

Shen, Z. H.

Z. H. Shen, S. Y. Zhang, J. Lu, and X. W. Ni, “Mathematical modeling of laser induced heating and melting in solid,” Opt. Laser Technol. 33, 533-537 (2001).
[CrossRef]

Stott, F. H.

J. F. Li, L. Li, and F. H. Stott, “Comparison of volumetric and surface heating sources in the modeling of laser melting of ceramic materials,” Int. J. Heat Mass Trans. 47, 1159-1174(2004).
[CrossRef]

Tian, W. X.

W. X. Tian and K. S. Chiu, “Temperature prediction for CO2 laser heating of moving glass rods,” Opt. Laser Technol. 36, 131-137 (2004).
[CrossRef]

Tsai, C. H.

C. H. Tsai and B. C. Lin, “Laser cutting with controlled fracture and pre-bending applied to LCD glass separation,” Int. J. Adv. Manuf. Technol. 32, 1155-1162 (2007).
[CrossRef]

C. H. Tsai and C. S. Liou, “Fracture mechanism of laser cutting with controlled fracture,” J. Manuf. Sci. Eng. 125, 519-528 (2003).
[CrossRef]

Wang, X. B.

J. K. Jiao and X. B. Wang, “A numerical simulation of machining glass by dual CO2-laser beams,” Opt. Laser Technol. 40, 297-301 (2008).
[CrossRef]

J. K. Jiao and X. B. Wang, “Temperature distribution of moving quartz glass heated by CO2 laser,” High Power Laser Part. Beams 19, 1-4 (2007).

Wang, Y. Z.

Y. Z. Wang and J. Lin, “Characterization of the laser cleaving on glass sheets with a line-shape laser beam,” Opt. Laser Technol. 39, 892-899 (2007).
[CrossRef]

Wei, C. Y.

C. Y. Wei, H. B. He, Z. Deng, J. D. Shao, and Z. X. Fan, “Study of thermal behaviors in CO2 laser irradiated glass,” Opt. Eng. 44, 044202 (2005).
[CrossRef]

Weibmann, R.

A. Helebrant, C. Buerhop, and R. Weibmann, “Mathematical modeling of temperature distribution during CO2 laser irradiation of glass,” Glass Technol. 34, 154-158 (1993).

Xu, B.

J. M. Jiang and B. Xu, “Study on seal pattern of ampoules,” Med. Equip. 119, 21-22 (2006).

Zhang, S. Y.

Z. H. Shen, S. Y. Zhang, J. Lu, and X. W. Ni, “Mathematical modeling of laser induced heating and melting in solid,” Opt. Laser Technol. 33, 533-537 (2001).
[CrossRef]

Zheng, H. Y.

H. Y. Zheng and T. Lee, “Studies of CO2 laser peeling of glass substrates,” J. Micromech. Microeng. 15, 2093-2097 (2005).
[CrossRef]

Ceram. Bull. (2)

G. K. Chui, “Laser cutting of hot glass,” Ceram. Bull. 54, 514-518 (1975).

M. Lumley, “Controlled separation of brittle materials using a laser,” Ceram. Bull. 48, 850-854 (1969).

Glass Technol. (1)

A. Helebrant, C. Buerhop, and R. Weibmann, “Mathematical modeling of temperature distribution during CO2 laser irradiation of glass,” Glass Technol. 34, 154-158 (1993).

High Power Laser Part. Beams (1)

J. K. Jiao and X. B. Wang, “Temperature distribution of moving quartz glass heated by CO2 laser,” High Power Laser Part. Beams 19, 1-4 (2007).

Int. J. Adv. Manuf. Technol. (1)

C. H. Tsai and B. C. Lin, “Laser cutting with controlled fracture and pre-bending applied to LCD glass separation,” Int. J. Adv. Manuf. Technol. 32, 1155-1162 (2007).
[CrossRef]

Int. J. Heat Mass Trans. (1)

J. F. Li, L. Li, and F. H. Stott, “Comparison of volumetric and surface heating sources in the modeling of laser melting of ceramic materials,” Int. J. Heat Mass Trans. 47, 1159-1174(2004).
[CrossRef]

J. Manuf. Sci. Eng. (1)

C. H. Tsai and C. S. Liou, “Fracture mechanism of laser cutting with controlled fracture,” J. Manuf. Sci. Eng. 125, 519-528 (2003).
[CrossRef]

J. Micromech. Microeng. (1)

H. Y. Zheng and T. Lee, “Studies of CO2 laser peeling of glass substrates,” J. Micromech. Microeng. 15, 2093-2097 (2005).
[CrossRef]

J. Yancheng Inst. Tech. (Natural Sci.) (1)

Y. Q. Li, “The discussion on technique of sealing ample,” J. Yancheng Inst. Tech. (Natural Sci.) 15, 36-375 (2002).

Med. Equip. (1)

J. M. Jiang and B. Xu, “Study on seal pattern of ampoules,” Med. Equip. 119, 21-22 (2006).

Opt. Eng. (1)

C. Y. Wei, H. B. He, Z. Deng, J. D. Shao, and Z. X. Fan, “Study of thermal behaviors in CO2 laser irradiated glass,” Opt. Eng. 44, 044202 (2005).
[CrossRef]

Opt. Laser Technol. (4)

Z. H. Shen, S. Y. Zhang, J. Lu, and X. W. Ni, “Mathematical modeling of laser induced heating and melting in solid,” Opt. Laser Technol. 33, 533-537 (2001).
[CrossRef]

W. X. Tian and K. S. Chiu, “Temperature prediction for CO2 laser heating of moving glass rods,” Opt. Laser Technol. 36, 131-137 (2004).
[CrossRef]

Y. Z. Wang and J. Lin, “Characterization of the laser cleaving on glass sheets with a line-shape laser beam,” Opt. Laser Technol. 39, 892-899 (2007).
[CrossRef]

J. K. Jiao and X. B. Wang, “A numerical simulation of machining glass by dual CO2-laser beams,” Opt. Laser Technol. 40, 297-301 (2008).
[CrossRef]

Other (1)

A. D. Fredericks, “Method for sealing ampoules,” U.S. patent 3,688,812 (5 September 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Scheme for sealing a glass ampoule with a laser beam.

Fig. 2
Fig. 2

Grid mesh for a 5 ml glass ampoule.

Fig. 3
Fig. 3

Temperature distributions on the outer and inner surfaces along the Z direction.

Fig. 4
Fig. 4

(a) Temperature changes with time on the outer surface of the ampoule’s neck. (b) Temperature history in a certain period of time.

Fig. 5
Fig. 5

Temperature distribution around the ampoule’s neck with different thickness wall (heated by a laser with P = 35 W , w = 3 mm for 0.9 s , then, heated by another laser beam with P = 45 W , w = 3 mm for 0.4 s ).

Fig. 6
Fig. 6

Temperature histories on the outer surface of the ampoule neck with different rotational speed (ampoules were heated by a laser with P = 35 W , w = 3 mm for 0.9 s first, then heated by another laser beam with P = 45 W , w = 3 mm ).

Fig. 7
Fig. 7

Thermal stress distribution around the ampoule’s neck (ampoules were heated by a laser with P = 35 W , w = 3 mm for 0.9 s first, then heated by another laser beam with P = 45 W , w = 3 mm for 0.4 s ).

Fig. 8
Fig. 8

(a) An ampoule is heated by lasers. (b) The glass material melts around the ampoule’s neck and is drawn away by a jaw. (c) Ampoule sealing is finished.

Fig. 9
Fig. 9

(a) A clean closure is created. (b) Failure due to human-induced factors.

Fig. 10
Fig. 10

Excellent sealing of ampoules.

Tables (1)

Tables Icon

Table 1 Physical Properties of the Borosilicate Glass1n1

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T t = k ( T ) ρ c ( T ) ( 2 T r 2 + 1 r T r + 1 r 2 2 T θ 2 + 2 T z 2 ) ,
Q ( r ) = ( 1 R ) P π ω 2 e r 2 ω 2 ,
k ( T ) T r = α ( T T ) ,

Metrics