Abstract

Glass ampoules were always sealed by melting in the presence of a flame to create closures. Some poisonous gases were generated in this sealing process that pollute the injection drug and are physically harmful. In this study, CO2 lasers were proposed for sealing glass ampoules. Because of the clean noncontact sealing process with lasers, there was nearly no pollution of the injection drug. To study in detail the principle of this sealing process, a mathematical model was put forward, and the temperature and the thermal stress field around the ampoule’s neck were calculated by ANSYS software. Through experimental study, 1ml and 5ml ampoules were sealed successfully by a dual-laser-beam method. The results show that a laser source is an ideal heat source for sealing glass ampoules.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription