Abstract

A method of chromatic aberration measurement is described based on the transmitted wavefront of an optical element obtained from a Mach–Zehnder interferometer. The chromatic aberration is derived from transmitted wavefronts measured at five different wavelengths. Reverse ray tracing is used to remove induced aberrations associated with the interferometer from the measurement. In the interferometer, the wavefront transmitted through the sample is tested against a plano reference, allowing for the absolute determination of the wavefront radius of curvature. The chromatic aberrations of a singlet and a doublet have been measured.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Greivenkamp, Field Guide to Geometrical Optics (SPIE, 2004).
    [Crossref]
  2. R. Kingslake, “Chromatic aberration,” in Lens Design Fundamentals (Academic, 1978), pp. 73-99.
  3. W. J. Smith, “Aberrations,” in Modern Optical Engineering, 3rd ed. (McGraw-Hill, 2000), pp. 72-73.
  4. P. Ruffieux, Y. Scharf, and H. P. Herzig, “On the chromatic aberration of microlenses,” Opt. Express 14, 4687-4694(2006).
    [Crossref] [PubMed]
  5. R. R. Shannon, “Aberrations,” in The Art and Science of Optical Design (Cambridge U. Press, 1997), pp. 170-191.
  6. V. N. Mahajan, “Image formation,” in Optical Imaging and Aberrations, Part II Wave Diffraction Optics (SPIE, 2004).
  7. J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering Vol. XI, R. R. Shannon and J. C. Wyant, eds. (Academic, 1992), pp. 1-53.
  8. K. Seong and J. E. Greivenkamp, “Surface figure measurement based on the transmitted wavefront with reverse ray tracing,” Opt. Eng. 47, 43602-1-43612 (2007).
  9. G. A. Williby, D. G. Smith, R. B. Brumfield, and J. E. Greivenkamp, “Interferometric testing of soft contact lenses,” Proc. SPIE 5180, 329-339 (2004).
    [Crossref]
  10. R. O. Gappinger and J. E. Greivenkamp, “Iterative reverse optimization procedure for calibration of aspheric wavefront measurements on a non-null interferometer,” Appl. Opt. 43, 5152-5161 (2004).
    [Crossref] [PubMed]
  11. G. R. Fowles, “Optics of solids,” in The Introduction to Modern Optics (Dover, 1989), pp. 155-160.
  12. B. M. Pixton and J. E. Greivenkamp, “Automated measurement of the refractive index of fluids,” Appl. Opt. 47, 1504-1509 (2008).
    [Crossref] [PubMed]

2008 (1)

2007 (1)

K. Seong and J. E. Greivenkamp, “Surface figure measurement based on the transmitted wavefront with reverse ray tracing,” Opt. Eng. 47, 43602-1-43612 (2007).

2006 (1)

2004 (2)

G. A. Williby, D. G. Smith, R. B. Brumfield, and J. E. Greivenkamp, “Interferometric testing of soft contact lenses,” Proc. SPIE 5180, 329-339 (2004).
[Crossref]

R. O. Gappinger and J. E. Greivenkamp, “Iterative reverse optimization procedure for calibration of aspheric wavefront measurements on a non-null interferometer,” Appl. Opt. 43, 5152-5161 (2004).
[Crossref] [PubMed]

Brumfield, R. B.

G. A. Williby, D. G. Smith, R. B. Brumfield, and J. E. Greivenkamp, “Interferometric testing of soft contact lenses,” Proc. SPIE 5180, 329-339 (2004).
[Crossref]

Creath, K.

J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering Vol. XI, R. R. Shannon and J. C. Wyant, eds. (Academic, 1992), pp. 1-53.

Fowles, G. R.

G. R. Fowles, “Optics of solids,” in The Introduction to Modern Optics (Dover, 1989), pp. 155-160.

Gappinger, R. O.

Greivenkamp, J. E.

B. M. Pixton and J. E. Greivenkamp, “Automated measurement of the refractive index of fluids,” Appl. Opt. 47, 1504-1509 (2008).
[Crossref] [PubMed]

K. Seong and J. E. Greivenkamp, “Surface figure measurement based on the transmitted wavefront with reverse ray tracing,” Opt. Eng. 47, 43602-1-43612 (2007).

R. O. Gappinger and J. E. Greivenkamp, “Iterative reverse optimization procedure for calibration of aspheric wavefront measurements on a non-null interferometer,” Appl. Opt. 43, 5152-5161 (2004).
[Crossref] [PubMed]

G. A. Williby, D. G. Smith, R. B. Brumfield, and J. E. Greivenkamp, “Interferometric testing of soft contact lenses,” Proc. SPIE 5180, 329-339 (2004).
[Crossref]

J. E. Greivenkamp, Field Guide to Geometrical Optics (SPIE, 2004).
[Crossref]

Herzig, H. P.

Kingslake, R.

R. Kingslake, “Chromatic aberration,” in Lens Design Fundamentals (Academic, 1978), pp. 73-99.

Mahajan, V. N.

V. N. Mahajan, “Image formation,” in Optical Imaging and Aberrations, Part II Wave Diffraction Optics (SPIE, 2004).

Pixton, B. M.

Ruffieux, P.

Scharf, Y.

Seong, K.

K. Seong and J. E. Greivenkamp, “Surface figure measurement based on the transmitted wavefront with reverse ray tracing,” Opt. Eng. 47, 43602-1-43612 (2007).

Shannon, R. R.

R. R. Shannon, “Aberrations,” in The Art and Science of Optical Design (Cambridge U. Press, 1997), pp. 170-191.

Smith, D. G.

G. A. Williby, D. G. Smith, R. B. Brumfield, and J. E. Greivenkamp, “Interferometric testing of soft contact lenses,” Proc. SPIE 5180, 329-339 (2004).
[Crossref]

Smith, W. J.

W. J. Smith, “Aberrations,” in Modern Optical Engineering, 3rd ed. (McGraw-Hill, 2000), pp. 72-73.

Williby, G. A.

G. A. Williby, D. G. Smith, R. B. Brumfield, and J. E. Greivenkamp, “Interferometric testing of soft contact lenses,” Proc. SPIE 5180, 329-339 (2004).
[Crossref]

Wyant, J. C.

J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering Vol. XI, R. R. Shannon and J. C. Wyant, eds. (Academic, 1992), pp. 1-53.

Appl. Opt. (2)

Opt. Eng. (1)

K. Seong and J. E. Greivenkamp, “Surface figure measurement based on the transmitted wavefront with reverse ray tracing,” Opt. Eng. 47, 43602-1-43612 (2007).

Opt. Express (1)

Proc. SPIE (1)

G. A. Williby, D. G. Smith, R. B. Brumfield, and J. E. Greivenkamp, “Interferometric testing of soft contact lenses,” Proc. SPIE 5180, 329-339 (2004).
[Crossref]

Other (7)

J. E. Greivenkamp, Field Guide to Geometrical Optics (SPIE, 2004).
[Crossref]

R. Kingslake, “Chromatic aberration,” in Lens Design Fundamentals (Academic, 1978), pp. 73-99.

W. J. Smith, “Aberrations,” in Modern Optical Engineering, 3rd ed. (McGraw-Hill, 2000), pp. 72-73.

R. R. Shannon, “Aberrations,” in The Art and Science of Optical Design (Cambridge U. Press, 1997), pp. 170-191.

V. N. Mahajan, “Image formation,” in Optical Imaging and Aberrations, Part II Wave Diffraction Optics (SPIE, 2004).

J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering Vol. XI, R. R. Shannon and J. C. Wyant, eds. (Academic, 1992), pp. 1-53.

G. R. Fowles, “Optics of solids,” in The Introduction to Modern Optics (Dover, 1989), pp. 155-160.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Modified Mach–Zehnder system.

Fig. 2
Fig. 2

Measured transmitted wavefront of a plano–convex lens in air over an aperture D = 5 mm at λ = 543 nm .

Fig. 3
Fig. 3

Sellmeir fit to the measured index values.

Fig. 4
Fig. 4

Comparison between modeled and measured optical powers of a singlet in visible light range.

Fig. 5
Fig. 5

Comparison between modeled and measured optical powers of an achromat.

Tables (1)

Tables Icon

Table 1 Optical Powers of a Singlet at Five Different Wavelengths

Metrics