Abstract

We report the observation of a self-written waveguide inside a bulk methylene blue sensitized poly/vinyl alcohol)/acrylamide photopolymer material. Light from a low power He–Ne laser is focused into the material, and the evolution of the beam is monitored. The refractive index of the material is modulated in the region of high intensity due to photobleaching and photopolymerization effects occurring in the material. As a result, the beam propagates through the medium without any diffraction effects.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072-4075 (1998).
    [CrossRef]
  2. S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett. 18, 1035-1037 (1993).
    [CrossRef] [PubMed]
  3. Y. S. Kivshar and G. P. Agrawal, Optical Solitons--From Fibers to Photonic Crystals (Academic, 2003).
  4. C. P. Jisha, V. C. Kuriakose, and K. Porsezian, “Modulational instability and beam propagation in photorefractive polymer,” J. Opt. Soc. Am. B 25, 674-679 (2008).
    [CrossRef]
  5. T. Yamashita, M. Kagami, and H. Ito, “Waveguide shape control and loss properties of light-induced self-written (LISW) optical waveguides,” J. Lightwave Technol. 20, 1556-1562(2002).
    [CrossRef]
  6. T. Yamashita and M. Kagami, “Fabrication of light-induced self-written waveguides with a w-shaped refractive index profile,” J. Lightwave Technol. 23, 2542-2548 (2005).
    [CrossRef]
  7. K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, “Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process,” IEEE Photon. Technol. Lett. 16, 801-803 (2004).
    [CrossRef]
  8. C. P. Jisha, V. C. Kuriakose, and K. Porsezian, “Dynamics of a light induced self-written waveguide directional coupler in a photopolymer,” Opt. Commun. 281, 1093-1098 (2008).
    [CrossRef]
  9. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14, 1339-1365 (2002).
    [CrossRef]
  10. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54-68(2000).
    [CrossRef]
  11. J.-W. Kang, J.-J. Kim, and E. Kim, “All-optical Mach-Zehnder modulator using a photochromic dye-doped polymer,” Appl. Phys. Lett. 80, 1710-1712 (2002).
    [CrossRef]
  12. J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
    [CrossRef]
  13. K. Saravanamuttu and M. P. Andrews, “Visible laser self-focusing in hybrid glass planar waveguides,” Opt. Lett. 27, 1342-1344 (2002).
    [CrossRef]
  14. I. B. Burgess, W. E. Shimmell, and K. Saravanamuttu, “Spontaneous pattern formation due to modulation instability of incoherent white light in a photopolymerizable medium,” J. Am. Chem. Soc. 129, 4738-4746 (2007).
    [CrossRef] [PubMed]
  15. A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21, 24-26 (1996).
    [CrossRef] [PubMed]
  16. L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun. 137, 239-243 (1997).
    [CrossRef]
  17. J. Kim, K.-H. Jeong, and L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Opt. Lett. 30, 5-7 (2005).
    [CrossRef] [PubMed]
  18. D. Tomic and A. R. Mickelson, “Photobleaching for waveguide formation in a guesthost polyimide,” Appl. Opt. 38, 3893-3903(1999).
    [CrossRef]
  19. B. M. John, M. Ushamani, K. Sreekumar, R. Joseph, and C. S. Kartha, “Enhancement of diffraction efficiency and storage life of poly(vinyl chloride) based optical recording medium with the incorporation of an electron donor,” Appl. Opt. 46, 346-350 (2007).
    [CrossRef] [PubMed]
  20. M. Ushamani, K. Sreekumar, C. S. Kartha, and R. Joseph, “Fabrication and characterization of methylene-blue-doped polyvinyl alcohol-polyacrylic acid blend for holographic recording,” Appl. Opt. 43, 3697-3703 (2004).
    [CrossRef] [PubMed]
  21. B. M. John, M. Ushamani, K. Sreekumar, R. Joseph, and C. S. Kartha, “Reusable recording medium based on MBPVA and vinyl acetate,” J. Mod. Opt. 53, 343-355 (2006).
    [CrossRef]
  22. C. Garca, I. Pascual, and A. Fimia, “Diffraction efficiency and signal-to-noise ratio of diffuse-object holograms in real time in polyvinyl alcohol photopolymers,” Appl. Opt. 38, 5548-5551(1999).
    [CrossRef]
  23. S. Blaya, R. M. L. Carretero, A. Fimia, and R. F. Madrigal, “Holography as a technique for the study of photopolymerization kinetics in dry polymeric films with a nonlinear response,” Appl. Opt. 38, 955-962 (1999).
    [CrossRef]
  24. C. Garcia, I. Pascual, A. Costela, I. Garcia-Moreno, C. Gomez, A. Fimia, and R. Sastre, “Hologram recording in polyvinyl alcohol/acrylamide photopolymers by means of pulsed laser exposure,” Appl. Opt. 41, 2613-2620(2002).
    [CrossRef] [PubMed]
  25. S. Gallego, M. Ortuno, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of polyvinyl alcohol/acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
    [CrossRef] [PubMed]
  26. B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Effect of chromium doping on the diffraction efficiency of methylene blue sensitized pva/acrylamide films,” J. Mater. Sci.: Mater. Electron. (to be published).
    [CrossRef]
  27. S. Shoji, H.-B. Sun, and S. Kawata, “Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference,” Appl. Phys. Lett. 83, 608-610(2003).
    [CrossRef]
  28. K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782-1784(2002).
    [CrossRef]

2008 (2)

C. P. Jisha, V. C. Kuriakose, and K. Porsezian, “Modulational instability and beam propagation in photorefractive polymer,” J. Opt. Soc. Am. B 25, 674-679 (2008).
[CrossRef]

C. P. Jisha, V. C. Kuriakose, and K. Porsezian, “Dynamics of a light induced self-written waveguide directional coupler in a photopolymer,” Opt. Commun. 281, 1093-1098 (2008).
[CrossRef]

2007 (2)

I. B. Burgess, W. E. Shimmell, and K. Saravanamuttu, “Spontaneous pattern formation due to modulation instability of incoherent white light in a photopolymerizable medium,” J. Am. Chem. Soc. 129, 4738-4746 (2007).
[CrossRef] [PubMed]

B. M. John, M. Ushamani, K. Sreekumar, R. Joseph, and C. S. Kartha, “Enhancement of diffraction efficiency and storage life of poly(vinyl chloride) based optical recording medium with the incorporation of an electron donor,” Appl. Opt. 46, 346-350 (2007).
[CrossRef] [PubMed]

2006 (1)

B. M. John, M. Ushamani, K. Sreekumar, R. Joseph, and C. S. Kartha, “Reusable recording medium based on MBPVA and vinyl acetate,” J. Mod. Opt. 53, 343-355 (2006).
[CrossRef]

2005 (3)

2004 (2)

K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, “Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process,” IEEE Photon. Technol. Lett. 16, 801-803 (2004).
[CrossRef]

M. Ushamani, K. Sreekumar, C. S. Kartha, and R. Joseph, “Fabrication and characterization of methylene-blue-doped polyvinyl alcohol-polyacrylic acid blend for holographic recording,” Appl. Opt. 43, 3697-3703 (2004).
[CrossRef] [PubMed]

2003 (2)

S. Shoji, H.-B. Sun, and S. Kawata, “Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference,” Appl. Phys. Lett. 83, 608-610(2003).
[CrossRef]

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

2002 (6)

2000 (1)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54-68(2000).
[CrossRef]

1999 (3)

1998 (1)

T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072-4075 (1998).
[CrossRef]

1997 (1)

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun. 137, 239-243 (1997).
[CrossRef]

1996 (1)

1993 (1)

Agrawal, G. P.

Y. S. Kivshar and G. P. Agrawal, Optical Solitons--From Fibers to Photonic Crystals (Academic, 2003).

Andrews, M. P.

Bazylenko, M.

T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072-4075 (1998).
[CrossRef]

Beléndez, A.

Blaya, S.

Bräuer, A.

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun. 137, 239-243 (1997).
[CrossRef]

Burgess, I. B.

I. B. Burgess, W. E. Shimmell, and K. Saravanamuttu, “Spontaneous pattern formation due to modulation instability of incoherent white light in a photopolymerizable medium,” J. Am. Chem. Soc. 129, 4738-4746 (2007).
[CrossRef] [PubMed]

Carre, C.

Carretero, R. M. L.

Costela, A.

Crégut, O.

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14, 1339-1365 (2002).
[CrossRef]

Dannberg, P.

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun. 137, 239-243 (1997).
[CrossRef]

de Sterke, C. M.

T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072-4075 (1998).
[CrossRef]

Dorkenoo, K.

Eldada, L.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54-68(2000).
[CrossRef]

Fimia, A.

Fort, A.

Friedrich, L.

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun. 137, 239-243 (1997).
[CrossRef]

Frisken, S. J.

Gallego, S.

Garca, C.

Garcia, C.

Garcia-Moreno, I.

Gillot, F.

Gomez, C.

Hashimoto, T.

K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, “Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process,” IEEE Photon. Technol. Lett. 16, 801-803 (2004).
[CrossRef]

Hennig, T.

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun. 137, 239-243 (1997).
[CrossRef]

Ito, H.

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14, 1339-1365 (2002).
[CrossRef]

Jeong, K.-H.

Jisha, C. P.

C. P. Jisha, V. C. Kuriakose, and K. Porsezian, “Dynamics of a light induced self-written waveguide directional coupler in a photopolymer,” Opt. Commun. 281, 1093-1098 (2008).
[CrossRef]

C. P. Jisha, V. C. Kuriakose, and K. Porsezian, “Modulational instability and beam propagation in photorefractive polymer,” J. Opt. Soc. Am. B 25, 674-679 (2008).
[CrossRef]

John, B. M.

B. M. John, M. Ushamani, K. Sreekumar, R. Joseph, and C. S. Kartha, “Enhancement of diffraction efficiency and storage life of poly(vinyl chloride) based optical recording medium with the incorporation of an electron donor,” Appl. Opt. 46, 346-350 (2007).
[CrossRef] [PubMed]

B. M. John, M. Ushamani, K. Sreekumar, R. Joseph, and C. S. Kartha, “Reusable recording medium based on MBPVA and vinyl acetate,” J. Mod. Opt. 53, 343-355 (2006).
[CrossRef]

B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Effect of chromium doping on the diffraction efficiency of methylene blue sensitized pva/acrylamide films,” J. Mater. Sci.: Mater. Electron. (to be published).
[CrossRef]

Joseph, R.

B. M. John, M. Ushamani, K. Sreekumar, R. Joseph, and C. S. Kartha, “Enhancement of diffraction efficiency and storage life of poly(vinyl chloride) based optical recording medium with the incorporation of an electron donor,” Appl. Opt. 46, 346-350 (2007).
[CrossRef] [PubMed]

B. M. John, M. Ushamani, K. Sreekumar, R. Joseph, and C. S. Kartha, “Reusable recording medium based on MBPVA and vinyl acetate,” J. Mod. Opt. 53, 343-355 (2006).
[CrossRef]

M. Ushamani, K. Sreekumar, C. S. Kartha, and R. Joseph, “Fabrication and characterization of methylene-blue-doped polyvinyl alcohol-polyacrylic acid blend for holographic recording,” Appl. Opt. 43, 3697-3703 (2004).
[CrossRef] [PubMed]

B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Effect of chromium doping on the diffraction efficiency of methylene blue sensitized pva/acrylamide films,” J. Mater. Sci.: Mater. Electron. (to be published).
[CrossRef]

Kagami, M.

Kang, J.-W.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

J.-W. Kang, J.-J. Kim, and E. Kim, “All-optical Mach-Zehnder modulator using a photochromic dye-doped polymer,” Appl. Phys. Lett. 80, 1710-1712 (2002).
[CrossRef]

Kartha, C. S.

B. M. John, M. Ushamani, K. Sreekumar, R. Joseph, and C. S. Kartha, “Enhancement of diffraction efficiency and storage life of poly(vinyl chloride) based optical recording medium with the incorporation of an electron donor,” Appl. Opt. 46, 346-350 (2007).
[CrossRef] [PubMed]

B. M. John, M. Ushamani, K. Sreekumar, R. Joseph, and C. S. Kartha, “Reusable recording medium based on MBPVA and vinyl acetate,” J. Mod. Opt. 53, 343-355 (2006).
[CrossRef]

M. Ushamani, K. Sreekumar, C. S. Kartha, and R. Joseph, “Fabrication and characterization of methylene-blue-doped polyvinyl alcohol-polyacrylic acid blend for holographic recording,” Appl. Opt. 43, 3697-3703 (2004).
[CrossRef] [PubMed]

B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Effect of chromium doping on the diffraction efficiency of methylene blue sensitized pva/acrylamide films,” J. Mater. Sci.: Mater. Electron. (to be published).
[CrossRef]

Karthe, W.

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun. 137, 239-243 (1997).
[CrossRef]

Kawata, S.

S. Shoji, H.-B. Sun, and S. Kawata, “Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference,” Appl. Phys. Lett. 83, 608-610(2003).
[CrossRef]

Kewitsch, A. S.

Kim, D. Y.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

Kim, E.

J.-W. Kang, J.-J. Kim, and E. Kim, “All-optical Mach-Zehnder modulator using a photochromic dye-doped polymer,” Appl. Phys. Lett. 80, 1710-1712 (2002).
[CrossRef]

Kim, J.

Kim, J.-J.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

J.-W. Kang, J.-J. Kim, and E. Kim, “All-optical Mach-Zehnder modulator using a photochromic dye-doped polymer,” Appl. Phys. Lett. 80, 1710-1712 (2002).
[CrossRef]

Kim, J.-P.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

Kim, M.-J.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

Kivshar, Y. S.

Y. S. Kivshar and G. P. Agrawal, Optical Solitons--From Fibers to Photonic Crystals (Academic, 2003).

Kuriakose, V. C.

C. P. Jisha, V. C. Kuriakose, and K. Porsezian, “Modulational instability and beam propagation in photorefractive polymer,” J. Opt. Soc. Am. B 25, 674-679 (2008).
[CrossRef]

C. P. Jisha, V. C. Kuriakose, and K. Porsezian, “Dynamics of a light induced self-written waveguide directional coupler in a photopolymer,” Opt. Commun. 281, 1093-1098 (2008).
[CrossRef]

Lee, J.-S.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

Lee, L. P.

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14, 1339-1365 (2002).
[CrossRef]

Madrigal, R. F.

Mager, L.

Márquez, A.

Mickelson, A. R.

Mochizuki, A.

K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, “Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process,” IEEE Photon. Technol. Lett. 16, 801-803 (2004).
[CrossRef]

Monro, T. M.

T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072-4075 (1998).
[CrossRef]

Moss, D.

T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072-4075 (1998).
[CrossRef]

Mune, K.

K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, “Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process,” IEEE Photon. Technol. Lett. 16, 801-803 (2004).
[CrossRef]

Naitou, R.

K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, “Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process,” IEEE Photon. Technol. Lett. 16, 801-803 (2004).
[CrossRef]

Neipp, C.

Oe, K.

K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, “Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process,” IEEE Photon. Technol. Lett. 16, 801-803 (2004).
[CrossRef]

Ortuno, M.

Pascual, I.

Poladian, L.

T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072-4075 (1998).
[CrossRef]

Porsezian, K.

C. P. Jisha, V. C. Kuriakose, and K. Porsezian, “Modulational instability and beam propagation in photorefractive polymer,” J. Opt. Soc. Am. B 25, 674-679 (2008).
[CrossRef]

C. P. Jisha, V. C. Kuriakose, and K. Porsezian, “Dynamics of a light induced self-written waveguide directional coupler in a photopolymer,” Opt. Commun. 281, 1093-1098 (2008).
[CrossRef]

Saravanamuttu, K.

I. B. Burgess, W. E. Shimmell, and K. Saravanamuttu, “Spontaneous pattern formation due to modulation instability of incoherent white light in a photopolymerizable medium,” J. Am. Chem. Soc. 129, 4738-4746 (2007).
[CrossRef] [PubMed]

K. Saravanamuttu and M. P. Andrews, “Visible laser self-focusing in hybrid glass planar waveguides,” Opt. Lett. 27, 1342-1344 (2002).
[CrossRef]

Sastre, R.

Shacklette, L. W.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54-68(2000).
[CrossRef]

Shimmell, W. E.

I. B. Burgess, W. E. Shimmell, and K. Saravanamuttu, “Spontaneous pattern formation due to modulation instability of incoherent white light in a photopolymerizable medium,” J. Am. Chem. Soc. 129, 4738-4746 (2007).
[CrossRef] [PubMed]

Shoji, S.

S. Shoji, H.-B. Sun, and S. Kawata, “Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference,” Appl. Phys. Lett. 83, 608-610(2003).
[CrossRef]

Sreekumar, K.

B. M. John, M. Ushamani, K. Sreekumar, R. Joseph, and C. S. Kartha, “Enhancement of diffraction efficiency and storage life of poly(vinyl chloride) based optical recording medium with the incorporation of an electron donor,” Appl. Opt. 46, 346-350 (2007).
[CrossRef] [PubMed]

B. M. John, M. Ushamani, K. Sreekumar, R. Joseph, and C. S. Kartha, “Reusable recording medium based on MBPVA and vinyl acetate,” J. Mod. Opt. 53, 343-355 (2006).
[CrossRef]

M. Ushamani, K. Sreekumar, C. S. Kartha, and R. Joseph, “Fabrication and characterization of methylene-blue-doped polyvinyl alcohol-polyacrylic acid blend for holographic recording,” Appl. Opt. 43, 3697-3703 (2004).
[CrossRef] [PubMed]

B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Effect of chromium doping on the diffraction efficiency of methylene blue sensitized pva/acrylamide films,” J. Mater. Sci.: Mater. Electron. (to be published).
[CrossRef]

Sun, H.-B.

S. Shoji, H.-B. Sun, and S. Kawata, “Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference,” Appl. Phys. Lett. 83, 608-610(2003).
[CrossRef]

Tomic, D.

Ushamani, M.

Wächter, C.

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun. 137, 239-243 (1997).
[CrossRef]

Yamashita, K.

K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, “Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process,” IEEE Photon. Technol. Lett. 16, 801-803 (2004).
[CrossRef]

Yamashita, T.

Yariv, A.

Yoo, S.-J.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

Adv. Mater. (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14, 1339-1365 (2002).
[CrossRef]

Appl. Opt. (7)

D. Tomic and A. R. Mickelson, “Photobleaching for waveguide formation in a guesthost polyimide,” Appl. Opt. 38, 3893-3903(1999).
[CrossRef]

B. M. John, M. Ushamani, K. Sreekumar, R. Joseph, and C. S. Kartha, “Enhancement of diffraction efficiency and storage life of poly(vinyl chloride) based optical recording medium with the incorporation of an electron donor,” Appl. Opt. 46, 346-350 (2007).
[CrossRef] [PubMed]

M. Ushamani, K. Sreekumar, C. S. Kartha, and R. Joseph, “Fabrication and characterization of methylene-blue-doped polyvinyl alcohol-polyacrylic acid blend for holographic recording,” Appl. Opt. 43, 3697-3703 (2004).
[CrossRef] [PubMed]

C. Garca, I. Pascual, and A. Fimia, “Diffraction efficiency and signal-to-noise ratio of diffuse-object holograms in real time in polyvinyl alcohol photopolymers,” Appl. Opt. 38, 5548-5551(1999).
[CrossRef]

S. Blaya, R. M. L. Carretero, A. Fimia, and R. F. Madrigal, “Holography as a technique for the study of photopolymerization kinetics in dry polymeric films with a nonlinear response,” Appl. Opt. 38, 955-962 (1999).
[CrossRef]

C. Garcia, I. Pascual, A. Costela, I. Garcia-Moreno, C. Gomez, A. Fimia, and R. Sastre, “Hologram recording in polyvinyl alcohol/acrylamide photopolymers by means of pulsed laser exposure,” Appl. Opt. 41, 2613-2620(2002).
[CrossRef] [PubMed]

S. Gallego, M. Ortuno, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of polyvinyl alcohol/acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

S. Shoji, H.-B. Sun, and S. Kawata, “Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference,” Appl. Phys. Lett. 83, 608-610(2003).
[CrossRef]

J.-W. Kang, J.-J. Kim, and E. Kim, “All-optical Mach-Zehnder modulator using a photochromic dye-doped polymer,” Appl. Phys. Lett. 80, 1710-1712 (2002).
[CrossRef]

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54-68(2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, “Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process,” IEEE Photon. Technol. Lett. 16, 801-803 (2004).
[CrossRef]

J. Am. Chem. Soc. (1)

I. B. Burgess, W. E. Shimmell, and K. Saravanamuttu, “Spontaneous pattern formation due to modulation instability of incoherent white light in a photopolymerizable medium,” J. Am. Chem. Soc. 129, 4738-4746 (2007).
[CrossRef] [PubMed]

J. Lightwave Technol. (2)

J. Mater. Sci.: Mater. Electron. (1)

B. M. John, R. Joseph, K. Sreekumar, and C. S. Kartha, “Effect of chromium doping on the diffraction efficiency of methylene blue sensitized pva/acrylamide films,” J. Mater. Sci.: Mater. Electron. (to be published).
[CrossRef]

J. Mod. Opt. (1)

B. M. John, M. Ushamani, K. Sreekumar, R. Joseph, and C. S. Kartha, “Reusable recording medium based on MBPVA and vinyl acetate,” J. Mod. Opt. 53, 343-355 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

C. P. Jisha, V. C. Kuriakose, and K. Porsezian, “Dynamics of a light induced self-written waveguide directional coupler in a photopolymer,” Opt. Commun. 281, 1093-1098 (2008).
[CrossRef]

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun. 137, 239-243 (1997).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072-4075 (1998).
[CrossRef]

Other (1)

Y. S. Kivshar and G. P. Agrawal, Optical Solitons--From Fibers to Photonic Crystals (Academic, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Change in absorbance as a function of exposure. The topmost curve is the spectrum of unexposed film. The lower most curve is that of PVA/acrylamide film (prior to MB doping).

Fig. 2
Fig. 2

Relative transmittance versus exposure for an incident intensity of 5 mW / cm 2 .

Fig. 3
Fig. 3

Experimental setup for the observation of self-writing of a low power He–Ne beam in a liquid photopolymer. S, shutter; F, neutral density filter; and L, lens.

Fig. 4
Fig. 4

Far field (Fourier space) pattern as the beam propagates through the medium after (a)  0 s , (b)  10 s , (c)  15 s , and (d)  20 s .

Fig. 5
Fig. 5

Propagation of the beam through the medium. (a) Initial diffraction. (b) Diffraction is balanced by the self-focusing.

Metrics