Abstract

An enhanced magnetic Faraday effect is demonstrated in cobalt nanoparticle-doped polymer optical fiber. Magneto-optically induced rotation of the plane of polarization proportional to both the dopant particle concentration and the magnetic field strength is demonstrated. Potential applications include magnetic field sensors, current sensors, and in-fiber optical isolators.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Özkul, and F. Sanchez, “Mode-lock, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,” Opt. Commun. 198, 141-146 (2001).
    [CrossRef]
  2. H. Lassing, W. J. Mastop, A. F. G. van der Meer, and A. A. M. Oomens, “Plasma current measurements by Faraday rotation in a single-mode fiber,” Appl. Opt. 26, 2456-2460 (1987).
    [CrossRef] [PubMed]
  3. E. H. Hwang and B. Y. Kim, “Pulsed high magnetic field sensor using polymethyl methacrylate,” Meas. Sci. Technol. 17, 2015-2021 (2006).
    [CrossRef]
  4. S. D. Jacobs, “Faraday rotation, optical isolation and modulation at 10.6 μm using hot-pressed CdCr2S4 and CoCr2S4,” J. Electron. Mater. 4, 223-241 (1975).
    [CrossRef]
  5. G. I. Chandler and F. C. Jahoda, “Current measurements by Faraday rotation in single-mode optical fibers,” Rev. Sci. Instrum. 56, 852-862 (1985).
    [CrossRef]
  6. C. Z. Tan and J. Arndt, “Faraday effect in silica glass,” Physica B 233, 1-7 (1997).
    [CrossRef]
  7. H. Harms, A. Papp, and K. Kempter, “Magneto-optical properties of index-gradient optical fibers,” Appl. Opt. 15, 799-801(1976).
    [CrossRef] [PubMed]
  8. A. M. Smith, “Polarization and magneto-optic properties of single-mode optical fiber,” Appl. Opt. 17, 52-56 (1978).
    [CrossRef] [PubMed]
  9. S. C. Rashleigh and R. Ulrich, “Magneto-optic current sensing with birefringent fibers,” Appl. Phys. Lett. 34 (11), 768-770(1979).
    [CrossRef]
  10. Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252, 39-45 (2005).
    [CrossRef]
  11. A. E. Turner, R. L. Gunshor, and S. Datta, “New class of materials for optical isolators,” Appl. Opt. 22, 3152-3154 (1983).
    [CrossRef] [PubMed]
  12. A. Horikawa, K. Yamaguchi, M. Inoue, T. Fujii, and K. I. Arai, “Magneto-optical effect of films with nano-clustered cobalt particles dispersed in PMMA plastics,” Mater. Sci. Eng. A 217, 348-352 (1996), see Fig. 6a.
    [CrossRef]
  13. H. C. Y. Yu, A. Argyros, G. Barton, M. A. van Eijkelenborg, C. Barbe, K. Finnie, L. Kong, F. Ladouceur, and S. McNiven, “Quantum dot and silica nanoparticle doped polymer optical fibers,” Opt. Express 15, 9989-9994 (2007).
    [CrossRef] [PubMed]
  14. J. Wouters, “Superparamagnetic nanoparticles for Faraday rotation,” http://www.kuleuven.be/inpac/presentations/Woueters_WP6_INPAC.pdf.
  15. V. K. Valev, J. Wouters, and T. Verbiest, “Precise measurements of Faraday rotation using ac magnetic fields,” Am. J. Phys. 76, 626-629 (2008).
    [CrossRef]
  16. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. De Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express 9 (7), 319-327 (2001).
    [CrossRef] [PubMed]
  17. M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibers (Springer Verlag, 2008).
    [CrossRef]
  18. N. A. Issa, “High numerical aperture in multimode microstructured optical fibers,” Appl. Opt. 43, 6191-6197 (2004).
    [CrossRef] [PubMed]
  19. R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91, 191119 (2007).
    [CrossRef]
  20. A. Jain, J. Kumar, F. Zhou, and L. Li, “A simple experiment for determining Verdet constants using alternating current magnetic fields,” Am. J. Phys. 67, 714-717 (1999).
    [CrossRef]
  21. J. D. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Dev. 21 (2), 168-175 (1977).
    [CrossRef]
  22. S. Kimura, T. Kato, T. Hyodo, Y. Shimizu, and M. Egashira, “Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method,” J. Magn. Magn. Mater. 312, 181-186 (2007).
    [CrossRef]

2008 (1)

V. K. Valev, J. Wouters, and T. Verbiest, “Precise measurements of Faraday rotation using ac magnetic fields,” Am. J. Phys. 76, 626-629 (2008).
[CrossRef]

2007 (3)

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91, 191119 (2007).
[CrossRef]

S. Kimura, T. Kato, T. Hyodo, Y. Shimizu, and M. Egashira, “Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method,” J. Magn. Magn. Mater. 312, 181-186 (2007).
[CrossRef]

H. C. Y. Yu, A. Argyros, G. Barton, M. A. van Eijkelenborg, C. Barbe, K. Finnie, L. Kong, F. Ladouceur, and S. McNiven, “Quantum dot and silica nanoparticle doped polymer optical fibers,” Opt. Express 15, 9989-9994 (2007).
[CrossRef] [PubMed]

2006 (1)

E. H. Hwang and B. Y. Kim, “Pulsed high magnetic field sensor using polymethyl methacrylate,” Meas. Sci. Technol. 17, 2015-2021 (2006).
[CrossRef]

2005 (1)

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252, 39-45 (2005).
[CrossRef]

2004 (1)

2001 (2)

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. De Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express 9 (7), 319-327 (2001).
[CrossRef] [PubMed]

A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Özkul, and F. Sanchez, “Mode-lock, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,” Opt. Commun. 198, 141-146 (2001).
[CrossRef]

1999 (1)

A. Jain, J. Kumar, F. Zhou, and L. Li, “A simple experiment for determining Verdet constants using alternating current magnetic fields,” Am. J. Phys. 67, 714-717 (1999).
[CrossRef]

1997 (1)

C. Z. Tan and J. Arndt, “Faraday effect in silica glass,” Physica B 233, 1-7 (1997).
[CrossRef]

1996 (1)

A. Horikawa, K. Yamaguchi, M. Inoue, T. Fujii, and K. I. Arai, “Magneto-optical effect of films with nano-clustered cobalt particles dispersed in PMMA plastics,” Mater. Sci. Eng. A 217, 348-352 (1996), see Fig. 6a.
[CrossRef]

1987 (1)

1985 (1)

G. I. Chandler and F. C. Jahoda, “Current measurements by Faraday rotation in single-mode optical fibers,” Rev. Sci. Instrum. 56, 852-862 (1985).
[CrossRef]

1983 (1)

1979 (1)

S. C. Rashleigh and R. Ulrich, “Magneto-optic current sensing with birefringent fibers,” Appl. Phys. Lett. 34 (11), 768-770(1979).
[CrossRef]

1978 (1)

1977 (1)

J. D. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Dev. 21 (2), 168-175 (1977).
[CrossRef]

1976 (1)

1975 (1)

S. D. Jacobs, “Faraday rotation, optical isolation and modulation at 10.6 μm using hot-pressed CdCr2S4 and CoCr2S4,” J. Electron. Mater. 4, 223-241 (1975).
[CrossRef]

Arai, K. I.

A. Horikawa, K. Yamaguchi, M. Inoue, T. Fujii, and K. I. Arai, “Magneto-optical effect of films with nano-clustered cobalt particles dispersed in PMMA plastics,” Mater. Sci. Eng. A 217, 348-352 (1996), see Fig. 6a.
[CrossRef]

Argyros, A.

Arndt, J.

C. Z. Tan and J. Arndt, “Faraday effect in silica glass,” Physica B 233, 1-7 (1997).
[CrossRef]

Bachmann, A.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91, 191119 (2007).
[CrossRef]

Barbe, C.

Barton, G.

H. C. Y. Yu, A. Argyros, G. Barton, M. A. van Eijkelenborg, C. Barbe, K. Finnie, L. Kong, F. Ladouceur, and S. McNiven, “Quantum dot and silica nanoparticle doped polymer optical fibers,” Opt. Express 15, 9989-9994 (2007).
[CrossRef] [PubMed]

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91, 191119 (2007).
[CrossRef]

Barton, G. W.

M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibers (Springer Verlag, 2008).
[CrossRef]

Bassett, I.

Brunel, M.

A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Özkul, and F. Sanchez, “Mode-lock, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,” Opt. Commun. 198, 141-146 (2001).
[CrossRef]

Chandler, G. I.

G. I. Chandler and F. C. Jahoda, “Current measurements by Faraday rotation in single-mode optical fibers,” Rev. Sci. Instrum. 56, 852-862 (1985).
[CrossRef]

Chartier, T.

A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Özkul, and F. Sanchez, “Mode-lock, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,” Opt. Commun. 198, 141-146 (2001).
[CrossRef]

Datta, S.

De Sterke, C. M.

Egashira, M.

S. Kimura, T. Kato, T. Hyodo, Y. Shimizu, and M. Egashira, “Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method,” J. Magn. Magn. Mater. 312, 181-186 (2007).
[CrossRef]

Finnie, K.

Fischer, J.

J. D. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Dev. 21 (2), 168-175 (1977).
[CrossRef]

Fleming, S.

Fujii, T.

A. Horikawa, K. Yamaguchi, M. Inoue, T. Fujii, and K. I. Arai, “Magneto-optical effect of films with nano-clustered cobalt particles dispersed in PMMA plastics,” Mater. Sci. Eng. A 217, 348-352 (1996), see Fig. 6a.
[CrossRef]

Gunshor, R. L.

Harms, H.

Harvey, J.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91, 191119 (2007).
[CrossRef]

Harvey, L.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91, 191119 (2007).
[CrossRef]

Hideur, A.

A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Özkul, and F. Sanchez, “Mode-lock, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,” Opt. Commun. 198, 141-146 (2001).
[CrossRef]

Hirst, D.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91, 191119 (2007).
[CrossRef]

Horikawa, A.

A. Horikawa, K. Yamaguchi, M. Inoue, T. Fujii, and K. I. Arai, “Magneto-optical effect of films with nano-clustered cobalt particles dispersed in PMMA plastics,” Mater. Sci. Eng. A 217, 348-352 (1996), see Fig. 6a.
[CrossRef]

Hwang, E. H.

E. H. Hwang and B. Y. Kim, “Pulsed high magnetic field sensor using polymethyl methacrylate,” Meas. Sci. Technol. 17, 2015-2021 (2006).
[CrossRef]

Hyodo, T.

S. Kimura, T. Kato, T. Hyodo, Y. Shimizu, and M. Egashira, “Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method,” J. Magn. Magn. Mater. 312, 181-186 (2007).
[CrossRef]

Inoue, M.

A. Horikawa, K. Yamaguchi, M. Inoue, T. Fujii, and K. I. Arai, “Magneto-optical effect of films with nano-clustered cobalt particles dispersed in PMMA plastics,” Mater. Sci. Eng. A 217, 348-352 (1996), see Fig. 6a.
[CrossRef]

Issa, N. A.

Jacobs, S. D.

S. D. Jacobs, “Faraday rotation, optical isolation and modulation at 10.6 μm using hot-pressed CdCr2S4 and CoCr2S4,” J. Electron. Mater. 4, 223-241 (1975).
[CrossRef]

Jahoda, F. C.

G. I. Chandler and F. C. Jahoda, “Current measurements by Faraday rotation in single-mode optical fibers,” Rev. Sci. Instrum. 56, 852-862 (1985).
[CrossRef]

Jain, A.

A. Jain, J. Kumar, F. Zhou, and L. Li, “A simple experiment for determining Verdet constants using alternating current magnetic fields,” Am. J. Phys. 67, 714-717 (1999).
[CrossRef]

Jarvis, R. A.

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252, 39-45 (2005).
[CrossRef]

Kato, T.

S. Kimura, T. Kato, T. Hyodo, Y. Shimizu, and M. Egashira, “Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method,” J. Magn. Magn. Mater. 312, 181-186 (2007).
[CrossRef]

Kempter, K.

Kim, B. Y.

E. H. Hwang and B. Y. Kim, “Pulsed high magnetic field sensor using polymethyl methacrylate,” Meas. Sci. Technol. 17, 2015-2021 (2006).
[CrossRef]

Kimura, S.

S. Kimura, T. Kato, T. Hyodo, Y. Shimizu, and M. Egashira, “Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method,” J. Magn. Magn. Mater. 312, 181-186 (2007).
[CrossRef]

Klein, K.-F.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91, 191119 (2007).
[CrossRef]

Kong, L.

Kumar, J.

A. Jain, J. Kumar, F. Zhou, and L. Li, “A simple experiment for determining Verdet constants using alternating current magnetic fields,” Am. J. Phys. 67, 714-717 (1999).
[CrossRef]

Ladouceur, F.

Large, M. C. J.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91, 191119 (2007).
[CrossRef]

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. De Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express 9 (7), 319-327 (2001).
[CrossRef] [PubMed]

M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibers (Springer Verlag, 2008).
[CrossRef]

Lassing, H.

Li, L.

A. Jain, J. Kumar, F. Zhou, and L. Li, “A simple experiment for determining Verdet constants using alternating current magnetic fields,” Am. J. Phys. 67, 714-717 (1999).
[CrossRef]

Luther-Davies, B.

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252, 39-45 (2005).
[CrossRef]

Lwin, R.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91, 191119 (2007).
[CrossRef]

Madden, S.

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252, 39-45 (2005).
[CrossRef]

Manos, S.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91, 191119 (2007).
[CrossRef]

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. De Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express 9 (7), 319-327 (2001).
[CrossRef] [PubMed]

Mastop, W. J.

McNiven, S.

McPhedran, R. C.

Nicorovici, N. A. P.

Oomens, A. A. M.

Özkul, C.

A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Özkul, and F. Sanchez, “Mode-lock, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,” Opt. Commun. 198, 141-146 (2001).
[CrossRef]

Papp, A.

Poisel, H.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91, 191119 (2007).
[CrossRef]

Poladian, L.

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91, 191119 (2007).
[CrossRef]

M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibers (Springer Verlag, 2008).
[CrossRef]

Rashleigh, S. C.

S. C. Rashleigh and R. Ulrich, “Magneto-optic current sensing with birefringent fibers,” Appl. Phys. Lett. 34 (11), 768-770(1979).
[CrossRef]

Rode, A. V.

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252, 39-45 (2005).
[CrossRef]

Ruan, Y.

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252, 39-45 (2005).
[CrossRef]

Salhi, M.

A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Özkul, and F. Sanchez, “Mode-lock, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,” Opt. Commun. 198, 141-146 (2001).
[CrossRef]

Sanchez, F.

A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Özkul, and F. Sanchez, “Mode-lock, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,” Opt. Commun. 198, 141-146 (2001).
[CrossRef]

Santo, R.

J. D. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Dev. 21 (2), 168-175 (1977).
[CrossRef]

Shimizu, Y.

S. Kimura, T. Kato, T. Hyodo, Y. Shimizu, and M. Egashira, “Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method,” J. Magn. Magn. Mater. 312, 181-186 (2007).
[CrossRef]

Smith, A. M.

Swalen, J. D.

J. D. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Dev. 21 (2), 168-175 (1977).
[CrossRef]

Tacke, M.

J. D. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Dev. 21 (2), 168-175 (1977).
[CrossRef]

Tan, C. Z.

C. Z. Tan and J. Arndt, “Faraday effect in silica glass,” Physica B 233, 1-7 (1997).
[CrossRef]

Turner, A. E.

Ulrich, R.

S. C. Rashleigh and R. Ulrich, “Magneto-optic current sensing with birefringent fibers,” Appl. Phys. Lett. 34 (11), 768-770(1979).
[CrossRef]

Valev, V. K.

V. K. Valev, J. Wouters, and T. Verbiest, “Precise measurements of Faraday rotation using ac magnetic fields,” Am. J. Phys. 76, 626-629 (2008).
[CrossRef]

van der Meer, A. F. G.

van Eijkelenborg, M. A.

Verbiest, T.

V. K. Valev, J. Wouters, and T. Verbiest, “Precise measurements of Faraday rotation using ac magnetic fields,” Am. J. Phys. 76, 626-629 (2008).
[CrossRef]

Wouters, J.

V. K. Valev, J. Wouters, and T. Verbiest, “Precise measurements of Faraday rotation using ac magnetic fields,” Am. J. Phys. 76, 626-629 (2008).
[CrossRef]

J. Wouters, “Superparamagnetic nanoparticles for Faraday rotation,” http://www.kuleuven.be/inpac/presentations/Woueters_WP6_INPAC.pdf.

Yamaguchi, K.

A. Horikawa, K. Yamaguchi, M. Inoue, T. Fujii, and K. I. Arai, “Magneto-optical effect of films with nano-clustered cobalt particles dispersed in PMMA plastics,” Mater. Sci. Eng. A 217, 348-352 (1996), see Fig. 6a.
[CrossRef]

Yu, H. C. Y.

Zagari, J.

Zhou, F.

A. Jain, J. Kumar, F. Zhou, and L. Li, “A simple experiment for determining Verdet constants using alternating current magnetic fields,” Am. J. Phys. 67, 714-717 (1999).
[CrossRef]

Am. J. Phys. (2)

A. Jain, J. Kumar, F. Zhou, and L. Li, “A simple experiment for determining Verdet constants using alternating current magnetic fields,” Am. J. Phys. 67, 714-717 (1999).
[CrossRef]

V. K. Valev, J. Wouters, and T. Verbiest, “Precise measurements of Faraday rotation using ac magnetic fields,” Am. J. Phys. 76, 626-629 (2008).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (2)

S. C. Rashleigh and R. Ulrich, “Magneto-optic current sensing with birefringent fibers,” Appl. Phys. Lett. 34 (11), 768-770(1979).
[CrossRef]

R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91, 191119 (2007).
[CrossRef]

IBM J. Res. Dev. (1)

J. D. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Dev. 21 (2), 168-175 (1977).
[CrossRef]

J. Electron. Mater. (1)

S. D. Jacobs, “Faraday rotation, optical isolation and modulation at 10.6 μm using hot-pressed CdCr2S4 and CoCr2S4,” J. Electron. Mater. 4, 223-241 (1975).
[CrossRef]

J. Magn. Magn. Mater. (1)

S. Kimura, T. Kato, T. Hyodo, Y. Shimizu, and M. Egashira, “Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method,” J. Magn. Magn. Mater. 312, 181-186 (2007).
[CrossRef]

Mater. Sci. Eng. A (1)

A. Horikawa, K. Yamaguchi, M. Inoue, T. Fujii, and K. I. Arai, “Magneto-optical effect of films with nano-clustered cobalt particles dispersed in PMMA plastics,” Mater. Sci. Eng. A 217, 348-352 (1996), see Fig. 6a.
[CrossRef]

Meas. Sci. Technol. (1)

E. H. Hwang and B. Y. Kim, “Pulsed high magnetic field sensor using polymethyl methacrylate,” Meas. Sci. Technol. 17, 2015-2021 (2006).
[CrossRef]

Opt. Commun. (2)

Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252, 39-45 (2005).
[CrossRef]

A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Özkul, and F. Sanchez, “Mode-lock, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,” Opt. Commun. 198, 141-146 (2001).
[CrossRef]

Opt. Express (2)

Physica B (1)

C. Z. Tan and J. Arndt, “Faraday effect in silica glass,” Physica B 233, 1-7 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

G. I. Chandler and F. C. Jahoda, “Current measurements by Faraday rotation in single-mode optical fibers,” Rev. Sci. Instrum. 56, 852-862 (1985).
[CrossRef]

Other (2)

J. Wouters, “Superparamagnetic nanoparticles for Faraday rotation,” http://www.kuleuven.be/inpac/presentations/Woueters_WP6_INPAC.pdf.

M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibers (Springer Verlag, 2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Microstructured polymer optical fiber (mPOF) with a PMMA/cobalt nanoparticle composite material core. The fiber has an external diameter of 400 μm and a core of 50 μm .

Fig. 2
Fig. 2

Setup to measure the magnetic Faraday rotations in nanoparticle-doped PMMA samples. SCG, super-continuum generation source; P, polarizer; S, solenoid; PBS, polarizing beam splitter; L, 4 × objective lens; OSA, optical spectrum analyzer.

Fig. 3
Fig. 3

Verdet constant versus wavelength for different concentrations of cobalt nanoparticles in PMMA. The dashed curve is the calculated undoped-PMMA result. The cobalt concentrations for the other curves are: a, 0%; b, 0.0055%; c, 0.05%; d, 0.125%; e, 0.25%; and f, 0.05%. The Verdet constant was measured using bulk samples for curves a–e, and using a fiber sample for curve f.

Fig. 4
Fig. 4

Average Verdet constant at 825 nm versus cobalt concentration.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ = V B L ,
θ ( λ ) = 1 2 arcsin ( I x I y I x + I y )
B av = 1 L 0 L B ( z ) d z .

Metrics