Abstract

A measurement technique for the quantitative investigation of mixture formation processes in hydrogen internal combustion engines (ICEs) has been developed using tracer-based laser-induced fluorescence (TLIF). This technique can be employed to fired and motored engine operation. The quantitative TLIF fuel/air-ratio results have been verified by means of linear Raman scattering measurements. Exemplary results of the simultaneous investigation of mixture formation and combustion obtained at an optical accessible hydrogen ICE are shown.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. High Level Group: Hydrogen Energy and Fuel Cells, A vision of our future/European Commission, EUR 20719 EN (2003).
  2. H. Eichlseder, T. Wallner, R. Freymann, and J. Ringler, “The potential of hydrogen internal combustion engine in a future mobility scenario,” SAE-Paper 2003-01-2267 (SAE, 2003).
  3. W. Cecil, “On the application of hydrogen gas to produce a moving power in machinery; with a description of an engine which is moved by the pressure of the atmosphere upon a vacuum caused by explosions of hydrogen gas and atmospheric air,” Trans. Cambridge Philos. Soc. 1, 217-239 (1821).
  4. M. Berckmüller, H. Rottengruber, A. Eder, N. Brehm, G. Elsässer, G. Müller-Alander, and C. Schwarz, “Potentials of a charged SI-hydrogen engine,” SAE-Paper 2003-01-3210 (SAE, 2003).
  5. C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
    [CrossRef]
  6. J. Hiltner and M. Samimy, “A study of in-cylinder mixing in a natural gas powered engine by planar laser-induced fluorescence,” SAE-Paper 961102 (SAE, 1996).
  7. J. M. Brault, D. Sneckenberger-Maymir, M. Samimy, and M. Matsuki, “An investigation of mixture formation processes during start-up of a natural gas powered SI engine,” SAE-Paper 981387 (SAE, 1998).
  8. D. B. Olsen, D. B. Mastbergen, and B. D. Willson, “Planar laser induced fluorescence imaging of gas injection from fuel valves for large bore natural gas engines,” Fall Technical Conference, ASME-Paper 2001-ICE-409 (American Society of Mechanical Engineers, 2001).
  9. F. Medaerts and D. Puechberty, “In-cylinder fuel/air mixture and flame front visualization in a transparent engine using PLIF: a comparison between natural gas and gasoline used as a fuel,” SAE-Paper 982524 (SAE, 1998).
  10. G. Bruneaux, “A study of mixture formation in direct injection diesel like conditions using quantitative fuel concentration visualizations in a gaseous fuel jet,” SAE-Paper 2002-01-1632 (SAE, 2002).
  11. F. S. Dorer, “Kompressionsmaschine zur Simulation von Brennraumvorgängen in Wasserstoff-Grossdieselmotoren,” Dr. Ing. dissertation (Technical University Munich, 2000).
  12. E. Tomita, Y. Hamamoto, S. Yoshiyama, and H. Toda, “Measurement of fuel concentration distribution of transient hydrogen jet and its flame using planar laser induced fluorescence method,” JSAE Rev. 19, 325-335 (1998).
    [CrossRef]
  13. T. Blotevogel, J. Egermann, J. Goldlücke, A. Leipertz, M. Hartmann, M. Schenk, and M. Berckmüller, “Developing planar laser-induced fluorescence for the investigation of the mixture formation process in hydrogen engines,” SAE-Paper 2004-01-1408 (SAE, 2004).
  14. J. Reboux, D. Puechberty, and F. Dionnet, “A new approach of planar laser induced fluorescence applied to fuel/air ratio measurement in the compression stroke of an optical S. I. Engine,” SAE-Paper 941988 (SAE, 1994).
  15. A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triethylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209 (1998).
    [CrossRef]
  16. T. Blotevogel, “Untersuchung der Gemischbildung und Verbrennung bei Wasserstoffmotoren mit Hilfe optischer Messtechniken,” Dr. Ing. dissertation (University Erlangen-Nuremberg, 2007).
  17. M. Berckmüller, N. P. Tait, and D. A. Greenhalgh, “The time history of the mixture formation process in a lean burn stratified-charge engine,” SAE Paper 961929 (SAE, 1996).
  18. J. Egermann, W. Ipp, V. Wagner, and A. Leipertz, “2D mapping and quantification of the in-cylinder air/fuel-ratio in a GDI engine by means of LIF and comparison to simultaneous results from 1D Raman measurements,” SAE Paper 2001-01-1977 (SAE, 2001).
  19. A. Leipertz, “Aufbau und Leistungsfähigkeit einer zeitlich lokal und räumlich hochauflösenden Pulslaser-Ramansonde zum Konzentrationsnachweis gasförmiger Schadstoffe,” Dr. Ing. dissertation (Ruhr-University Bochum, 1979).
  20. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, 1988).
  21. J. Egermann, T. Seeger, and A. Leipertz, “Application of 266 nm and 355 nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by Raman scattering,” Appl. Opt. 43, 5564-5574 (2004).
    [CrossRef] [PubMed]
  22. S. Verhelst, R. Woolley, M. Lawes, and R. Sierens, “Laminar and unstable burning velocities and Markstein lengths of hydrogen-air mixtures at engine-like conditions,” Proc. Combust. Inst. 30, 209-216 (2005).
    [CrossRef]
  23. S. Pischinger and J. B. Heywood, “Einfluss der Zündkerze auf zyklische Verbrennungsschwankungen im Ottomotor,” MTZ Motortech. Z. 52, 82-92 (1991).
  24. A. Malarski, J. Egermann, J. Zehndner, and A. Leipertz, “Simultaneous application of single-shot Ramanography and particle image velocimetry,” Opt. Lett. 31, 1005-1007 (2006).
    [CrossRef] [PubMed]

2006

2005

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

S. Verhelst, R. Woolley, M. Lawes, and R. Sierens, “Laminar and unstable burning velocities and Markstein lengths of hydrogen-air mixtures at engine-like conditions,” Proc. Combust. Inst. 30, 209-216 (2005).
[CrossRef]

2004

1998

E. Tomita, Y. Hamamoto, S. Yoshiyama, and H. Toda, “Measurement of fuel concentration distribution of transient hydrogen jet and its flame using planar laser induced fluorescence method,” JSAE Rev. 19, 325-335 (1998).
[CrossRef]

A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triethylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209 (1998).
[CrossRef]

1991

S. Pischinger and J. B. Heywood, “Einfluss der Zündkerze auf zyklische Verbrennungsschwankungen im Ottomotor,” MTZ Motortech. Z. 52, 82-92 (1991).

1821

W. Cecil, “On the application of hydrogen gas to produce a moving power in machinery; with a description of an engine which is moved by the pressure of the atmosphere upon a vacuum caused by explosions of hydrogen gas and atmospheric air,” Trans. Cambridge Philos. Soc. 1, 217-239 (1821).

Berckmüller, M.

M. Berckmüller, H. Rottengruber, A. Eder, N. Brehm, G. Elsässer, G. Müller-Alander, and C. Schwarz, “Potentials of a charged SI-hydrogen engine,” SAE-Paper 2003-01-3210 (SAE, 2003).

T. Blotevogel, J. Egermann, J. Goldlücke, A. Leipertz, M. Hartmann, M. Schenk, and M. Berckmüller, “Developing planar laser-induced fluorescence for the investigation of the mixture formation process in hydrogen engines,” SAE-Paper 2004-01-1408 (SAE, 2004).

M. Berckmüller, N. P. Tait, and D. A. Greenhalgh, “The time history of the mixture formation process in a lean burn stratified-charge engine,” SAE Paper 961929 (SAE, 1996).

Blotevogel, T.

T. Blotevogel, J. Egermann, J. Goldlücke, A. Leipertz, M. Hartmann, M. Schenk, and M. Berckmüller, “Developing planar laser-induced fluorescence for the investigation of the mixture formation process in hydrogen engines,” SAE-Paper 2004-01-1408 (SAE, 2004).

T. Blotevogel, “Untersuchung der Gemischbildung und Verbrennung bei Wasserstoffmotoren mit Hilfe optischer Messtechniken,” Dr. Ing. dissertation (University Erlangen-Nuremberg, 2007).

Brault, J. M.

J. M. Brault, D. Sneckenberger-Maymir, M. Samimy, and M. Matsuki, “An investigation of mixture formation processes during start-up of a natural gas powered SI engine,” SAE-Paper 981387 (SAE, 1998).

Brehm, N.

M. Berckmüller, H. Rottengruber, A. Eder, N. Brehm, G. Elsässer, G. Müller-Alander, and C. Schwarz, “Potentials of a charged SI-hydrogen engine,” SAE-Paper 2003-01-3210 (SAE, 2003).

Bruneaux, G.

G. Bruneaux, “A study of mixture formation in direct injection diesel like conditions using quantitative fuel concentration visualizations in a gaseous fuel jet,” SAE-Paper 2002-01-1632 (SAE, 2002).

Cecil, W.

W. Cecil, “On the application of hydrogen gas to produce a moving power in machinery; with a description of an engine which is moved by the pressure of the atmosphere upon a vacuum caused by explosions of hydrogen gas and atmospheric air,” Trans. Cambridge Philos. Soc. 1, 217-239 (1821).

Dionnet, F.

J. Reboux, D. Puechberty, and F. Dionnet, “A new approach of planar laser induced fluorescence applied to fuel/air ratio measurement in the compression stroke of an optical S. I. Engine,” SAE-Paper 941988 (SAE, 1994).

Dorer, F. S.

F. S. Dorer, “Kompressionsmaschine zur Simulation von Brennraumvorgängen in Wasserstoff-Grossdieselmotoren,” Dr. Ing. dissertation (Technical University Munich, 2000).

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, 1988).

Eder, A.

M. Berckmüller, H. Rottengruber, A. Eder, N. Brehm, G. Elsässer, G. Müller-Alander, and C. Schwarz, “Potentials of a charged SI-hydrogen engine,” SAE-Paper 2003-01-3210 (SAE, 2003).

Egermann, J.

A. Malarski, J. Egermann, J. Zehndner, and A. Leipertz, “Simultaneous application of single-shot Ramanography and particle image velocimetry,” Opt. Lett. 31, 1005-1007 (2006).
[CrossRef] [PubMed]

J. Egermann, T. Seeger, and A. Leipertz, “Application of 266 nm and 355 nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by Raman scattering,” Appl. Opt. 43, 5564-5574 (2004).
[CrossRef] [PubMed]

T. Blotevogel, J. Egermann, J. Goldlücke, A. Leipertz, M. Hartmann, M. Schenk, and M. Berckmüller, “Developing planar laser-induced fluorescence for the investigation of the mixture formation process in hydrogen engines,” SAE-Paper 2004-01-1408 (SAE, 2004).

J. Egermann, W. Ipp, V. Wagner, and A. Leipertz, “2D mapping and quantification of the in-cylinder air/fuel-ratio in a GDI engine by means of LIF and comparison to simultaneous results from 1D Raman measurements,” SAE Paper 2001-01-1977 (SAE, 2001).

Eichlseder, H.

H. Eichlseder, T. Wallner, R. Freymann, and J. Ringler, “The potential of hydrogen internal combustion engine in a future mobility scenario,” SAE-Paper 2003-01-2267 (SAE, 2003).

Elsässer, G.

M. Berckmüller, H. Rottengruber, A. Eder, N. Brehm, G. Elsässer, G. Müller-Alander, and C. Schwarz, “Potentials of a charged SI-hydrogen engine,” SAE-Paper 2003-01-3210 (SAE, 2003).

Freymann, R.

H. Eichlseder, T. Wallner, R. Freymann, and J. Ringler, “The potential of hydrogen internal combustion engine in a future mobility scenario,” SAE-Paper 2003-01-2267 (SAE, 2003).

Fröba, A. P.

A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triethylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209 (1998).
[CrossRef]

Goldlücke, J.

T. Blotevogel, J. Egermann, J. Goldlücke, A. Leipertz, M. Hartmann, M. Schenk, and M. Berckmüller, “Developing planar laser-induced fluorescence for the investigation of the mixture formation process in hydrogen engines,” SAE-Paper 2004-01-1408 (SAE, 2004).

Greenhalgh, D. A.

M. Berckmüller, N. P. Tait, and D. A. Greenhalgh, “The time history of the mixture formation process in a lean burn stratified-charge engine,” SAE Paper 961929 (SAE, 1996).

Hamamoto, Y.

E. Tomita, Y. Hamamoto, S. Yoshiyama, and H. Toda, “Measurement of fuel concentration distribution of transient hydrogen jet and its flame using planar laser induced fluorescence method,” JSAE Rev. 19, 325-335 (1998).
[CrossRef]

Hartmann, M.

T. Blotevogel, J. Egermann, J. Goldlücke, A. Leipertz, M. Hartmann, M. Schenk, and M. Berckmüller, “Developing planar laser-induced fluorescence for the investigation of the mixture formation process in hydrogen engines,” SAE-Paper 2004-01-1408 (SAE, 2004).

Heywood, J. B.

S. Pischinger and J. B. Heywood, “Einfluss der Zündkerze auf zyklische Verbrennungsschwankungen im Ottomotor,” MTZ Motortech. Z. 52, 82-92 (1991).

Hiltner, J.

J. Hiltner and M. Samimy, “A study of in-cylinder mixing in a natural gas powered engine by planar laser-induced fluorescence,” SAE-Paper 961102 (SAE, 1996).

Ipp, W.

J. Egermann, W. Ipp, V. Wagner, and A. Leipertz, “2D mapping and quantification of the in-cylinder air/fuel-ratio in a GDI engine by means of LIF and comparison to simultaneous results from 1D Raman measurements,” SAE Paper 2001-01-1977 (SAE, 2001).

Lawes, M.

S. Verhelst, R. Woolley, M. Lawes, and R. Sierens, “Laminar and unstable burning velocities and Markstein lengths of hydrogen-air mixtures at engine-like conditions,” Proc. Combust. Inst. 30, 209-216 (2005).
[CrossRef]

Leipertz, A.

A. Malarski, J. Egermann, J. Zehndner, and A. Leipertz, “Simultaneous application of single-shot Ramanography and particle image velocimetry,” Opt. Lett. 31, 1005-1007 (2006).
[CrossRef] [PubMed]

J. Egermann, T. Seeger, and A. Leipertz, “Application of 266 nm and 355 nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by Raman scattering,” Appl. Opt. 43, 5564-5574 (2004).
[CrossRef] [PubMed]

A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triethylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209 (1998).
[CrossRef]

T. Blotevogel, J. Egermann, J. Goldlücke, A. Leipertz, M. Hartmann, M. Schenk, and M. Berckmüller, “Developing planar laser-induced fluorescence for the investigation of the mixture formation process in hydrogen engines,” SAE-Paper 2004-01-1408 (SAE, 2004).

J. Egermann, W. Ipp, V. Wagner, and A. Leipertz, “2D mapping and quantification of the in-cylinder air/fuel-ratio in a GDI engine by means of LIF and comparison to simultaneous results from 1D Raman measurements,” SAE Paper 2001-01-1977 (SAE, 2001).

A. Leipertz, “Aufbau und Leistungsfähigkeit einer zeitlich lokal und räumlich hochauflösenden Pulslaser-Ramansonde zum Konzentrationsnachweis gasförmiger Schadstoffe,” Dr. Ing. dissertation (Ruhr-University Bochum, 1979).

Malarski, A.

Mastbergen, D. B.

D. B. Olsen, D. B. Mastbergen, and B. D. Willson, “Planar laser induced fluorescence imaging of gas injection from fuel valves for large bore natural gas engines,” Fall Technical Conference, ASME-Paper 2001-ICE-409 (American Society of Mechanical Engineers, 2001).

Matsuki, M.

J. M. Brault, D. Sneckenberger-Maymir, M. Samimy, and M. Matsuki, “An investigation of mixture formation processes during start-up of a natural gas powered SI engine,” SAE-Paper 981387 (SAE, 1998).

Medaerts, F.

F. Medaerts and D. Puechberty, “In-cylinder fuel/air mixture and flame front visualization in a transparent engine using PLIF: a comparison between natural gas and gasoline used as a fuel,” SAE-Paper 982524 (SAE, 1998).

Müller-Alander, G.

M. Berckmüller, H. Rottengruber, A. Eder, N. Brehm, G. Elsässer, G. Müller-Alander, and C. Schwarz, “Potentials of a charged SI-hydrogen engine,” SAE-Paper 2003-01-3210 (SAE, 2003).

Münch, K.-U.

A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triethylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209 (1998).
[CrossRef]

Olsen, D. B.

D. B. Olsen, D. B. Mastbergen, and B. D. Willson, “Planar laser induced fluorescence imaging of gas injection from fuel valves for large bore natural gas engines,” Fall Technical Conference, ASME-Paper 2001-ICE-409 (American Society of Mechanical Engineers, 2001).

Pischinger, S.

S. Pischinger and J. B. Heywood, “Einfluss der Zündkerze auf zyklische Verbrennungsschwankungen im Ottomotor,” MTZ Motortech. Z. 52, 82-92 (1991).

Puechberty, D.

F. Medaerts and D. Puechberty, “In-cylinder fuel/air mixture and flame front visualization in a transparent engine using PLIF: a comparison between natural gas and gasoline used as a fuel,” SAE-Paper 982524 (SAE, 1998).

J. Reboux, D. Puechberty, and F. Dionnet, “A new approach of planar laser induced fluorescence applied to fuel/air ratio measurement in the compression stroke of an optical S. I. Engine,” SAE-Paper 941988 (SAE, 1994).

Rabenstein, F.

A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triethylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209 (1998).
[CrossRef]

Reboux, J.

J. Reboux, D. Puechberty, and F. Dionnet, “A new approach of planar laser induced fluorescence applied to fuel/air ratio measurement in the compression stroke of an optical S. I. Engine,” SAE-Paper 941988 (SAE, 1994).

Ringler, J.

H. Eichlseder, T. Wallner, R. Freymann, and J. Ringler, “The potential of hydrogen internal combustion engine in a future mobility scenario,” SAE-Paper 2003-01-2267 (SAE, 2003).

Rottengruber, H.

M. Berckmüller, H. Rottengruber, A. Eder, N. Brehm, G. Elsässer, G. Müller-Alander, and C. Schwarz, “Potentials of a charged SI-hydrogen engine,” SAE-Paper 2003-01-3210 (SAE, 2003).

Samimy, M.

J. M. Brault, D. Sneckenberger-Maymir, M. Samimy, and M. Matsuki, “An investigation of mixture formation processes during start-up of a natural gas powered SI engine,” SAE-Paper 981387 (SAE, 1998).

J. Hiltner and M. Samimy, “A study of in-cylinder mixing in a natural gas powered engine by planar laser-induced fluorescence,” SAE-Paper 961102 (SAE, 1996).

Schenk, M.

T. Blotevogel, J. Egermann, J. Goldlücke, A. Leipertz, M. Hartmann, M. Schenk, and M. Berckmüller, “Developing planar laser-induced fluorescence for the investigation of the mixture formation process in hydrogen engines,” SAE-Paper 2004-01-1408 (SAE, 2004).

Schulz, C.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

Schwarz, C.

M. Berckmüller, H. Rottengruber, A. Eder, N. Brehm, G. Elsässer, G. Müller-Alander, and C. Schwarz, “Potentials of a charged SI-hydrogen engine,” SAE-Paper 2003-01-3210 (SAE, 2003).

Seeger, T.

Sick, V.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

Sierens, R.

S. Verhelst, R. Woolley, M. Lawes, and R. Sierens, “Laminar and unstable burning velocities and Markstein lengths of hydrogen-air mixtures at engine-like conditions,” Proc. Combust. Inst. 30, 209-216 (2005).
[CrossRef]

Sneckenberger-Maymir, D.

J. M. Brault, D. Sneckenberger-Maymir, M. Samimy, and M. Matsuki, “An investigation of mixture formation processes during start-up of a natural gas powered SI engine,” SAE-Paper 981387 (SAE, 1998).

Tait, N. P.

M. Berckmüller, N. P. Tait, and D. A. Greenhalgh, “The time history of the mixture formation process in a lean burn stratified-charge engine,” SAE Paper 961929 (SAE, 1996).

Toda, H.

E. Tomita, Y. Hamamoto, S. Yoshiyama, and H. Toda, “Measurement of fuel concentration distribution of transient hydrogen jet and its flame using planar laser induced fluorescence method,” JSAE Rev. 19, 325-335 (1998).
[CrossRef]

Tomita, E.

E. Tomita, Y. Hamamoto, S. Yoshiyama, and H. Toda, “Measurement of fuel concentration distribution of transient hydrogen jet and its flame using planar laser induced fluorescence method,” JSAE Rev. 19, 325-335 (1998).
[CrossRef]

Verhelst, S.

S. Verhelst, R. Woolley, M. Lawes, and R. Sierens, “Laminar and unstable burning velocities and Markstein lengths of hydrogen-air mixtures at engine-like conditions,” Proc. Combust. Inst. 30, 209-216 (2005).
[CrossRef]

Wagner, V.

J. Egermann, W. Ipp, V. Wagner, and A. Leipertz, “2D mapping and quantification of the in-cylinder air/fuel-ratio in a GDI engine by means of LIF and comparison to simultaneous results from 1D Raman measurements,” SAE Paper 2001-01-1977 (SAE, 2001).

Wallner, T.

H. Eichlseder, T. Wallner, R. Freymann, and J. Ringler, “The potential of hydrogen internal combustion engine in a future mobility scenario,” SAE-Paper 2003-01-2267 (SAE, 2003).

Willson, B. D.

D. B. Olsen, D. B. Mastbergen, and B. D. Willson, “Planar laser induced fluorescence imaging of gas injection from fuel valves for large bore natural gas engines,” Fall Technical Conference, ASME-Paper 2001-ICE-409 (American Society of Mechanical Engineers, 2001).

Woolley, R.

S. Verhelst, R. Woolley, M. Lawes, and R. Sierens, “Laminar and unstable burning velocities and Markstein lengths of hydrogen-air mixtures at engine-like conditions,” Proc. Combust. Inst. 30, 209-216 (2005).
[CrossRef]

Yoshiyama, S.

E. Tomita, Y. Hamamoto, S. Yoshiyama, and H. Toda, “Measurement of fuel concentration distribution of transient hydrogen jet and its flame using planar laser induced fluorescence method,” JSAE Rev. 19, 325-335 (1998).
[CrossRef]

Zehndner, J.

Appl. Opt.

Combust. Flame

A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triethylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209 (1998).
[CrossRef]

JSAE Rev.

E. Tomita, Y. Hamamoto, S. Yoshiyama, and H. Toda, “Measurement of fuel concentration distribution of transient hydrogen jet and its flame using planar laser induced fluorescence method,” JSAE Rev. 19, 325-335 (1998).
[CrossRef]

MTZ Motortech. Z.

S. Pischinger and J. B. Heywood, “Einfluss der Zündkerze auf zyklische Verbrennungsschwankungen im Ottomotor,” MTZ Motortech. Z. 52, 82-92 (1991).

Opt. Lett.

Proc. Combust. Inst.

S. Verhelst, R. Woolley, M. Lawes, and R. Sierens, “Laminar and unstable burning velocities and Markstein lengths of hydrogen-air mixtures at engine-like conditions,” Proc. Combust. Inst. 30, 209-216 (2005).
[CrossRef]

Prog. Energy Combust. Sci.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

Trans. Cambridge Philos. Soc.

W. Cecil, “On the application of hydrogen gas to produce a moving power in machinery; with a description of an engine which is moved by the pressure of the atmosphere upon a vacuum caused by explosions of hydrogen gas and atmospheric air,” Trans. Cambridge Philos. Soc. 1, 217-239 (1821).

Other

M. Berckmüller, H. Rottengruber, A. Eder, N. Brehm, G. Elsässer, G. Müller-Alander, and C. Schwarz, “Potentials of a charged SI-hydrogen engine,” SAE-Paper 2003-01-3210 (SAE, 2003).

High Level Group: Hydrogen Energy and Fuel Cells, A vision of our future/European Commission, EUR 20719 EN (2003).

H. Eichlseder, T. Wallner, R. Freymann, and J. Ringler, “The potential of hydrogen internal combustion engine in a future mobility scenario,” SAE-Paper 2003-01-2267 (SAE, 2003).

J. Hiltner and M. Samimy, “A study of in-cylinder mixing in a natural gas powered engine by planar laser-induced fluorescence,” SAE-Paper 961102 (SAE, 1996).

J. M. Brault, D. Sneckenberger-Maymir, M. Samimy, and M. Matsuki, “An investigation of mixture formation processes during start-up of a natural gas powered SI engine,” SAE-Paper 981387 (SAE, 1998).

D. B. Olsen, D. B. Mastbergen, and B. D. Willson, “Planar laser induced fluorescence imaging of gas injection from fuel valves for large bore natural gas engines,” Fall Technical Conference, ASME-Paper 2001-ICE-409 (American Society of Mechanical Engineers, 2001).

F. Medaerts and D. Puechberty, “In-cylinder fuel/air mixture and flame front visualization in a transparent engine using PLIF: a comparison between natural gas and gasoline used as a fuel,” SAE-Paper 982524 (SAE, 1998).

G. Bruneaux, “A study of mixture formation in direct injection diesel like conditions using quantitative fuel concentration visualizations in a gaseous fuel jet,” SAE-Paper 2002-01-1632 (SAE, 2002).

F. S. Dorer, “Kompressionsmaschine zur Simulation von Brennraumvorgängen in Wasserstoff-Grossdieselmotoren,” Dr. Ing. dissertation (Technical University Munich, 2000).

T. Blotevogel, J. Egermann, J. Goldlücke, A. Leipertz, M. Hartmann, M. Schenk, and M. Berckmüller, “Developing planar laser-induced fluorescence for the investigation of the mixture formation process in hydrogen engines,” SAE-Paper 2004-01-1408 (SAE, 2004).

J. Reboux, D. Puechberty, and F. Dionnet, “A new approach of planar laser induced fluorescence applied to fuel/air ratio measurement in the compression stroke of an optical S. I. Engine,” SAE-Paper 941988 (SAE, 1994).

T. Blotevogel, “Untersuchung der Gemischbildung und Verbrennung bei Wasserstoffmotoren mit Hilfe optischer Messtechniken,” Dr. Ing. dissertation (University Erlangen-Nuremberg, 2007).

M. Berckmüller, N. P. Tait, and D. A. Greenhalgh, “The time history of the mixture formation process in a lean burn stratified-charge engine,” SAE Paper 961929 (SAE, 1996).

J. Egermann, W. Ipp, V. Wagner, and A. Leipertz, “2D mapping and quantification of the in-cylinder air/fuel-ratio in a GDI engine by means of LIF and comparison to simultaneous results from 1D Raman measurements,” SAE Paper 2001-01-1977 (SAE, 2001).

A. Leipertz, “Aufbau und Leistungsfähigkeit einer zeitlich lokal und räumlich hochauflösenden Pulslaser-Ramansonde zum Konzentrationsnachweis gasförmiger Schadstoffe,” Dr. Ing. dissertation (Ruhr-University Bochum, 1979).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Dependence of the fluorescence signal intensity on the fuel/air ratio Φ.

Fig. 2
Fig. 2

Fluorescence intensity dependence on incident laser intensity.

Fig. 3
Fig. 3

Fluorescence intensity dependence on water content (use of synthetic air inside the calibration cell).

Fig. 4
Fig. 4

Comparison between TLIF and Raman measurements in fired-engine operation ( 208 ° CA before firing TDC).

Fig. 5
Fig. 5

Optical accessible engine and optical setup for TLIF measurements (shown here with vertical LLS, centered in the cylinder beneath the spark plug).

Fig. 6
Fig. 6

Schematic of the device for mixing gas and tracer and for filling the gas cylinder to 300 bar . T-MDR, tracer mass flow controller; MDR, mass flow controller.

Fig. 7
Fig. 7

Schematic of the device for high-pressure gas supply. PM, pressure meter; MFM, mass flow meter.

Fig. 8
Fig. 8

Typical result of simultaneous tracer TLIF and flame luminosity measurements.

Metrics