Abstract

Chromatic dispersion compensation is an essential feature of high speed dense wavelength-division multiplexing (DWDM) systems. We propose a dispersion compensator structure whose characteristics meet the optical DWDM system requirements. The proposed structure is based on Fibonacci quasi-periodic multilayer structures composed of layers with large index differences. Studying the dispersive properties of Fibonacci structures with generation numbers j=3 and 4, and calculating group delay (GD) and group velocity dispersion (GVD) of their reflection bands, we have demonstrated that to have a smooth GD and almost a constant GVD in each band of a DWDM system, one needs not only to suitably chirp the structure refractive index profile, but also must properly apodize it. We also demonstrate the possibility of achieving high slope GDs and large GVDs by means of high order Fibonacci structures with thicker layers. Finally, by varying the layer dimensions and refractive indices as well as Fibonacci’s order, one can design DWDM dispersion compensators suitable for distances as long as 220km.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Morimoto, I. Kobayashi, H. Hiramatsu, K. Mukasa, R. Sugizaki, Y. Suzuki, and Y. Kamikura, “Development of dispersion compensation cable using reverse dispersion fiber,” in Proceedings of the Fifth Asia-Pacific Conference on Communications, 1999 and Fourth Optoelectronics and Communications Conference (APCC/OECC, 1999), Vol. 2, pp. 1590-1593.
    [CrossRef]
  2. M. Kazunori and T. Yagi, “Dispersion flat and low nonlinear optical link with new type of reverse dispersion fiber (RDF-60),” in Digest of Optical Fiber Communication Conference (Optical Society of America, 2001), paper TuH7.
  3. G. Lenz and C. K. Madsen, “General optical all-pass filter structures for dispersion control in WDM systems,” J. Lightwave Technol. 17, 1248-1254 (1999).
    [CrossRef]
  4. B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation using a fiber grating in transmission,” Electron. Lett. 32, 1610-1611 (1996).
    [CrossRef]
  5. N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse reconstruction,” J. Lightwave Technol. 15, 1303-1313 (1997).
    [CrossRef]
  6. R. Kashyap, “Chirped fibre Bragg gratings for WDM applications,” in Digest of Optical Amplifiers and Their Applications (Optical Society of America, 1997), paper FAW12.
  7. M. Ibsen, M. K. Durkin, K. Ennser, M. J. Cole, and R. I. Laming, “Long continuously chirped fiber Bragg gratings for compensation of linearand 3rd order dispersion,” in Proceedings of the European Conference on Optical Communications (1997), pp. 49-52.
  8. L. D. Garrett, A. H. Gnauck, F. Forghieri, V. Gusmeroli, and D. Scarano, “16-10 Gb/s WDM transmission over 840 km SMF using eleven broadband chirped fiber gratings,” IEEE Photon. Technol. Lett. 11, 484-486 (1999).
    [CrossRef]
  9. X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
    [CrossRef]
  10. D. J. Moss, M. Lamont, S. McLaugthlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, “Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons,” IEEE Photon. Technol. Lett. 15, 730-732(2003).
    [CrossRef]
  11. J. A. R. Williams, L. A. Everall, I. Bennion, and N. J. Doran, “Fiber Bragg grating fabrication for dispersion slope compensation,” IEEE Photon. Technol. Lett. 8, 1187-1189(1996).
    [CrossRef]
  12. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long superstructure Bragg gratings in optical fibers,” Electron. Lett. 30, 1620-1622 (1994).
    [CrossRef]
  13. F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. J. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings,” Electron. Lett. 31, 899-901, (1995).
    [CrossRef]
  14. A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30, 1972-1974 (1994).
    [CrossRef]
  15. M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891-1893 (1997).
    [CrossRef]
  16. Y. Dai, X. Chen, J. Sun, and S. Xie, “Wideband multichannel dispersion compensation based on a strongly chirped sampled Bragg grating and phase shifts,” Opt. Lett. 31, 311-313(2006).
    [CrossRef] [PubMed]
  17. M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization in optics: quasi-periodic media,” Phys. Rev. Lett. 58, 2436-2438(1987).
    [CrossRef] [PubMed]
  18. C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasi-periodic (self-similar) structures,” Pure Appl. Opt. 7, 383-391 (1998).
    [CrossRef]
  19. W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633-636 (1994).
    [CrossRef] [PubMed]
  20. D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal,” Opt. Commun. 198, 273-279 (2001).
    [CrossRef]
  21. R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasi-periodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063-3065 (2002).
    [CrossRef]
  22. E. Macia, “Optical engineering with Fibonacci dielectric multilayers,” Appl. Phys. Lett. 73, 3330-3332 (1998).
    [CrossRef]
  23. E. Macia, “Exploiting quasi-periodic order in the design of optical devices,” Phys. Rev. B 63, 205421 (2001).
    [CrossRef]
  24. E. Macia, “Optical applications of Fibonacci dielectric multilayers,” Ferroelectrics 250, 401-404 (2001).
    [CrossRef]
  25. X. Yang, Y. Liu, and X. Fu, “Transmission properties of light through the Fibonacci-class multilayers,” Phys. Rev. B 59, 4546-4548 (1999).
    [CrossRef]
  26. X. Q. Huang, S. S. Jiang, R. W. Peng, and A. Hu, “Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers,” Phys. Rev. E 59, 245104 (2001).
  27. S. Golmohammadi, M. K. Moravvej-Farshi, A. Rostami, and A. Zarifkar, “Narrowband DWDM filters based on Fibonacci-class quasi-periodic structures,” Opt. Express 15, 10520-10532, (2007).
    [CrossRef] [PubMed]
  28. R. Germann, H. W. M. Salemnik, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237-2241 (2000).
    [CrossRef]
  29. H. A. Macleod, Thin Film Optical Filter, 2nd ed. (McGraw-Hill, 1989).
  30. P. K. Katti, K. Singh, and A. K. Kavathekar, “Effect of an apodizing screen on the rectangular and triangular wave response of a circular aperture with incoherent incident light,” Appl. Opt. 9, 129-134 (1970).
    [CrossRef] [PubMed]
  31. V. Agarwal and M. E Mora-Romes, “Optical characterization of polytype Fibonacci and Thue-Morse quasiregular dielectric structures made of porous silicon multilayers,” J. Phys. D 40, 3203-3211 (2007).
    [CrossRef]
  32. S. H. Kim, H. Hiroshima, and M. Komuro, “Photo-nanoimprint lithography combined with thermal treatment to improve resist pattern line-edge roughness,” Nanotechnology 17, 2219-2222 (2006).
    [CrossRef]

2007

S. Golmohammadi, M. K. Moravvej-Farshi, A. Rostami, and A. Zarifkar, “Narrowband DWDM filters based on Fibonacci-class quasi-periodic structures,” Opt. Express 15, 10520-10532, (2007).
[CrossRef] [PubMed]

V. Agarwal and M. E Mora-Romes, “Optical characterization of polytype Fibonacci and Thue-Morse quasiregular dielectric structures made of porous silicon multilayers,” J. Phys. D 40, 3203-3211 (2007).
[CrossRef]

2006

S. H. Kim, H. Hiroshima, and M. Komuro, “Photo-nanoimprint lithography combined with thermal treatment to improve resist pattern line-edge roughness,” Nanotechnology 17, 2219-2222 (2006).
[CrossRef]

Y. Dai, X. Chen, J. Sun, and S. Xie, “Wideband multichannel dispersion compensation based on a strongly chirped sampled Bragg grating and phase shifts,” Opt. Lett. 31, 311-313(2006).
[CrossRef] [PubMed]

2003

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

D. J. Moss, M. Lamont, S. McLaugthlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, “Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons,” IEEE Photon. Technol. Lett. 15, 730-732(2003).
[CrossRef]

2002

R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasi-periodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063-3065 (2002).
[CrossRef]

2001

E. Macia, “Exploiting quasi-periodic order in the design of optical devices,” Phys. Rev. B 63, 205421 (2001).
[CrossRef]

E. Macia, “Optical applications of Fibonacci dielectric multilayers,” Ferroelectrics 250, 401-404 (2001).
[CrossRef]

X. Q. Huang, S. S. Jiang, R. W. Peng, and A. Hu, “Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers,” Phys. Rev. E 59, 245104 (2001).

D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal,” Opt. Commun. 198, 273-279 (2001).
[CrossRef]

2000

R. Germann, H. W. M. Salemnik, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237-2241 (2000).
[CrossRef]

1999

X. Yang, Y. Liu, and X. Fu, “Transmission properties of light through the Fibonacci-class multilayers,” Phys. Rev. B 59, 4546-4548 (1999).
[CrossRef]

G. Lenz and C. K. Madsen, “General optical all-pass filter structures for dispersion control in WDM systems,” J. Lightwave Technol. 17, 1248-1254 (1999).
[CrossRef]

L. D. Garrett, A. H. Gnauck, F. Forghieri, V. Gusmeroli, and D. Scarano, “16-10 Gb/s WDM transmission over 840 km SMF using eleven broadband chirped fiber gratings,” IEEE Photon. Technol. Lett. 11, 484-486 (1999).
[CrossRef]

1998

C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasi-periodic (self-similar) structures,” Pure Appl. Opt. 7, 383-391 (1998).
[CrossRef]

E. Macia, “Optical engineering with Fibonacci dielectric multilayers,” Appl. Phys. Lett. 73, 3330-3332 (1998).
[CrossRef]

1997

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891-1893 (1997).
[CrossRef]

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse reconstruction,” J. Lightwave Technol. 15, 1303-1313 (1997).
[CrossRef]

1996

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation using a fiber grating in transmission,” Electron. Lett. 32, 1610-1611 (1996).
[CrossRef]

J. A. R. Williams, L. A. Everall, I. Bennion, and N. J. Doran, “Fiber Bragg grating fabrication for dispersion slope compensation,” IEEE Photon. Technol. Lett. 8, 1187-1189(1996).
[CrossRef]

1995

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. J. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings,” Electron. Lett. 31, 899-901, (1995).
[CrossRef]

1994

A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30, 1972-1974 (1994).
[CrossRef]

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633-636 (1994).
[CrossRef] [PubMed]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long superstructure Bragg gratings in optical fibers,” Electron. Lett. 30, 1620-1622 (1994).
[CrossRef]

1987

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization in optics: quasi-periodic media,” Phys. Rev. Lett. 58, 2436-2438(1987).
[CrossRef] [PubMed]

1970

Abdulhalim, I.

D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal,” Opt. Commun. 198, 273-279 (2001).
[CrossRef]

Agarwal, V.

V. Agarwal and M. E Mora-Romes, “Optical characterization of polytype Fibonacci and Thue-Morse quasiregular dielectric structures made of porous silicon multilayers,” J. Phys. D 40, 3203-3211 (2007).
[CrossRef]

Bennion, I.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

J. A. R. Williams, L. A. Everall, I. Bennion, and N. J. Doran, “Fiber Bragg grating fabrication for dispersion slope compensation,” IEEE Photon. Technol. Lett. 8, 1187-1189(1996).
[CrossRef]

Bertolotti, M.

C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasi-periodic (self-similar) structures,” Pure Appl. Opt. 7, 383-391 (1998).
[CrossRef]

Beyeler, R.

R. Germann, H. W. M. Salemnik, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237-2241 (2000).
[CrossRef]

Bona, G. L.

R. Germann, H. W. M. Salemnik, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237-2241 (2000).
[CrossRef]

Brodzeli, Z.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation using a fiber grating in transmission,” Electron. Lett. 32, 1610-1611 (1996).
[CrossRef]

Byron, K.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

Chen, X.

Colbourne, P.

D. J. Moss, M. Lamont, S. McLaugthlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, “Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons,” IEEE Photon. Technol. Lett. 15, 730-732(2003).
[CrossRef]

Cole, M. J.

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891-1893 (1997).
[CrossRef]

M. Ibsen, M. K. Durkin, K. Ennser, M. J. Cole, and R. I. Laming, “Long continuously chirped fiber Bragg gratings for compensation of linearand 3rd order dispersion,” in Proceedings of the European Conference on Optical Communications (1997), pp. 49-52.

Dai, Y.

Dhosi, G.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation using a fiber grating in transmission,” Electron. Lett. 32, 1610-1611 (1996).
[CrossRef]

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. J. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings,” Electron. Lett. 31, 899-901, (1995).
[CrossRef]

Doran, N. J.

J. A. R. Williams, L. A. Everall, I. Bennion, and N. J. Doran, “Fiber Bragg grating fabrication for dispersion slope compensation,” IEEE Photon. Technol. Lett. 8, 1187-1189(1996).
[CrossRef]

Durkin, M.

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891-1893 (1997).
[CrossRef]

Durkin, M. K.

M. Ibsen, M. K. Durkin, K. Ennser, M. J. Cole, and R. I. Laming, “Long continuously chirped fiber Bragg gratings for compensation of linearand 3rd order dispersion,” in Proceedings of the European Conference on Optical Communications (1997), pp. 49-52.

Eggleton, B. J.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse reconstruction,” J. Lightwave Technol. 15, 1303-1313 (1997).
[CrossRef]

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation using a fiber grating in transmission,” Electron. Lett. 32, 1610-1611 (1996).
[CrossRef]

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. J. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings,” Electron. Lett. 31, 899-901, (1995).
[CrossRef]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long superstructure Bragg gratings in optical fibers,” Electron. Lett. 30, 1620-1622 (1994).
[CrossRef]

Ennser, K.

M. Ibsen, M. K. Durkin, K. Ennser, M. J. Cole, and R. I. Laming, “Long continuously chirped fiber Bragg gratings for compensation of linearand 3rd order dispersion,” in Proceedings of the European Conference on Optical Communications (1997), pp. 49-52.

Everall, L. A.

J. A. R. Williams, L. A. Everall, I. Bennion, and N. J. Doran, “Fiber Bragg grating fabrication for dispersion slope compensation,” IEEE Photon. Technol. Lett. 8, 1187-1189(1996).
[CrossRef]

Felmeri, I.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

Forghieri, F.

L. D. Garrett, A. H. Gnauck, F. Forghieri, V. Gusmeroli, and D. Scarano, “16-10 Gb/s WDM transmission over 840 km SMF using eleven broadband chirped fiber gratings,” IEEE Photon. Technol. Lett. 11, 484-486 (1999).
[CrossRef]

Fu, X.

X. Yang, Y. Liu, and X. Fu, “Transmission properties of light through the Fibonacci-class multilayers,” Phys. Rev. B 59, 4546-4548 (1999).
[CrossRef]

Garrett, L. D.

L. D. Garrett, A. H. Gnauck, F. Forghieri, V. Gusmeroli, and D. Scarano, “16-10 Gb/s WDM transmission over 840 km SMF using eleven broadband chirped fiber gratings,” IEEE Photon. Technol. Lett. 11, 484-486 (1999).
[CrossRef]

Gellermann, W.

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633-636 (1994).
[CrossRef] [PubMed]

Germann, R.

R. Germann, H. W. M. Salemnik, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237-2241 (2000).
[CrossRef]

Gnauck, A. H.

L. D. Garrett, A. H. Gnauck, F. Forghieri, V. Gusmeroli, and D. Scarano, “16-10 Gb/s WDM transmission over 840 km SMF using eleven broadband chirped fiber gratings,” IEEE Photon. Technol. Lett. 11, 484-486 (1999).
[CrossRef]

Golmohammadi, S.

Gusmeroli, V.

L. D. Garrett, A. H. Gnauck, F. Forghieri, V. Gusmeroli, and D. Scarano, “16-10 Gb/s WDM transmission over 840 km SMF using eleven broadband chirped fiber gratings,” IEEE Photon. Technol. Lett. 11, 484-486 (1999).
[CrossRef]

Hiramatsu, H.

M. Morimoto, I. Kobayashi, H. Hiramatsu, K. Mukasa, R. Sugizaki, Y. Suzuki, and Y. Kamikura, “Development of dispersion compensation cable using reverse dispersion fiber,” in Proceedings of the Fifth Asia-Pacific Conference on Communications, 1999 and Fourth Optoelectronics and Communications Conference (APCC/OECC, 1999), Vol. 2, pp. 1590-1593.
[CrossRef]

Hiroshima, H.

S. H. Kim, H. Hiroshima, and M. Komuro, “Photo-nanoimprint lithography combined with thermal treatment to improve resist pattern line-edge roughness,” Nanotechnology 17, 2219-2222 (2006).
[CrossRef]

Horst, F.

R. Germann, H. W. M. Salemnik, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237-2241 (2000).
[CrossRef]

Hu, A.

R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasi-periodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063-3065 (2002).
[CrossRef]

X. Q. Huang, S. S. Jiang, R. W. Peng, and A. Hu, “Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers,” Phys. Rev. E 59, 245104 (2001).

Huang, X. Q.

R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasi-periodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063-3065 (2002).
[CrossRef]

X. Q. Huang, S. S. Jiang, R. W. Peng, and A. Hu, “Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers,” Phys. Rev. E 59, 245104 (2001).

Huang, Z.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

Hulse, C. A.

D. J. Moss, M. Lamont, S. McLaugthlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, “Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons,” IEEE Photon. Technol. Lett. 15, 730-732(2003).
[CrossRef]

Ibsen, M.

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891-1893 (1997).
[CrossRef]

M. Ibsen, M. K. Durkin, K. Ennser, M. J. Cole, and R. I. Laming, “Long continuously chirped fiber Bragg gratings for compensation of linearand 3rd order dispersion,” in Proceedings of the European Conference on Optical Communications (1997), pp. 49-52.

Iguchi, K.

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization in optics: quasi-periodic media,” Phys. Rev. Lett. 58, 2436-2438(1987).
[CrossRef] [PubMed]

Jian, S. S.

R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasi-periodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063-3065 (2002).
[CrossRef]

Jiang, S. S.

X. Q. Huang, S. S. Jiang, R. W. Peng, and A. Hu, “Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers,” Phys. Rev. E 59, 245104 (2001).

Kamikura, Y.

M. Morimoto, I. Kobayashi, H. Hiramatsu, K. Mukasa, R. Sugizaki, Y. Suzuki, and Y. Kamikura, “Development of dispersion compensation cable using reverse dispersion fiber,” in Proceedings of the Fifth Asia-Pacific Conference on Communications, 1999 and Fourth Optoelectronics and Communications Conference (APCC/OECC, 1999), Vol. 2, pp. 1590-1593.
[CrossRef]

Kashyap, R.

R. Kashyap, “Chirped fibre Bragg gratings for WDM applications,” in Digest of Optical Amplifiers and Their Applications (Optical Society of America, 1997), paper FAW12.

Katti, P. K.

Kavathekar, A. K.

Kazunori, M.

M. Kazunori and T. Yagi, “Dispersion flat and low nonlinear optical link with new type of reverse dispersion fiber (RDF-60),” in Digest of Optical Fiber Communication Conference (Optical Society of America, 2001), paper TuH7.

Khrushchev, I.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

Kim, S. H.

S. H. Kim, H. Hiroshima, and M. Komuro, “Photo-nanoimprint lithography combined with thermal treatment to improve resist pattern line-edge roughness,” Nanotechnology 17, 2219-2222 (2006).
[CrossRef]

Kiran, S.

D. J. Moss, M. Lamont, S. McLaugthlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, “Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons,” IEEE Photon. Technol. Lett. 15, 730-732(2003).
[CrossRef]

Kobayashi, I.

M. Morimoto, I. Kobayashi, H. Hiramatsu, K. Mukasa, R. Sugizaki, Y. Suzuki, and Y. Kamikura, “Development of dispersion compensation cable using reverse dispersion fiber,” in Proceedings of the Fifth Asia-Pacific Conference on Communications, 1999 and Fourth Optoelectronics and Communications Conference (APCC/OECC, 1999), Vol. 2, pp. 1590-1593.
[CrossRef]

Kohmoto, M.

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633-636 (1994).
[CrossRef] [PubMed]

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization in optics: quasi-periodic media,” Phys. Rev. Lett. 58, 2436-2438(1987).
[CrossRef] [PubMed]

Komuro, M.

S. H. Kim, H. Hiroshima, and M. Komuro, “Photo-nanoimprint lithography combined with thermal treatment to improve resist pattern line-edge roughness,” Nanotechnology 17, 2219-2222 (2006).
[CrossRef]

Krug, P. A.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation using a fiber grating in transmission,” Electron. Lett. 32, 1610-1611 (1996).
[CrossRef]

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. J. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings,” Electron. Lett. 31, 899-901, (1995).
[CrossRef]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long superstructure Bragg gratings in optical fibers,” Electron. Lett. 30, 1620-1622 (1994).
[CrossRef]

Laming, R. I.

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891-1893 (1997).
[CrossRef]

M. Ibsen, M. K. Durkin, K. Ennser, M. J. Cole, and R. I. Laming, “Long continuously chirped fiber Bragg gratings for compensation of linearand 3rd order dispersion,” in Proceedings of the European Conference on Optical Communications (1997), pp. 49-52.

Lamont, M.

D. J. Moss, M. Lamont, S. McLaugthlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, “Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons,” IEEE Photon. Technol. Lett. 15, 730-732(2003).
[CrossRef]

Lee, X.

A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30, 1972-1974 (1994).
[CrossRef]

Lenz, G.

Litchinitser, N. M.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse reconstruction,” J. Lightwave Technol. 15, 1303-1313 (1997).
[CrossRef]

Liu, Y.

X. Yang, Y. Liu, and X. Fu, “Transmission properties of light through the Fibonacci-class multilayers,” Phys. Rev. B 59, 4546-4548 (1999).
[CrossRef]

Lloyd, G.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

Lusk, D.

D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal,” Opt. Commun. 198, 273-279 (2001).
[CrossRef]

Macia, E.

E. Macia, “Exploiting quasi-periodic order in the design of optical devices,” Phys. Rev. B 63, 205421 (2001).
[CrossRef]

E. Macia, “Optical applications of Fibonacci dielectric multilayers,” Ferroelectrics 250, 401-404 (2001).
[CrossRef]

E. Macia, “Optical engineering with Fibonacci dielectric multilayers,” Appl. Phys. Lett. 73, 3330-3332 (1998).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filter, 2nd ed. (McGraw-Hill, 1989).

Madsen, C. K.

Masciulli, P.

C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasi-periodic (self-similar) structures,” Pure Appl. Opt. 7, 383-391 (1998).
[CrossRef]

Massarek, I.

R. Germann, H. W. M. Salemnik, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237-2241 (2000).
[CrossRef]

Mazzer, M.

R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasi-periodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063-3065 (2002).
[CrossRef]

McLaugthlin, S.

D. J. Moss, M. Lamont, S. McLaugthlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, “Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons,” IEEE Photon. Technol. Lett. 15, 730-732(2003).
[CrossRef]

Measures, R. M.

A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30, 1972-1974 (1994).
[CrossRef]

Mitchell, J.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

Mora-Romes, M. E

V. Agarwal and M. E Mora-Romes, “Optical characterization of polytype Fibonacci and Thue-Morse quasiregular dielectric structures made of porous silicon multilayers,” J. Phys. D 40, 3203-3211 (2007).
[CrossRef]

Moravvej-Farshi, M. K.

Morimoto, M.

M. Morimoto, I. Kobayashi, H. Hiramatsu, K. Mukasa, R. Sugizaki, Y. Suzuki, and Y. Kamikura, “Development of dispersion compensation cable using reverse dispersion fiber,” in Proceedings of the Fifth Asia-Pacific Conference on Communications, 1999 and Fourth Optoelectronics and Communications Conference (APCC/OECC, 1999), Vol. 2, pp. 1590-1593.
[CrossRef]

Moss, D. J.

D. J. Moss, M. Lamont, S. McLaugthlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, “Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons,” IEEE Photon. Technol. Lett. 15, 730-732(2003).
[CrossRef]

Mukasa, K.

M. Morimoto, I. Kobayashi, H. Hiramatsu, K. Mukasa, R. Sugizaki, Y. Suzuki, and Y. Kamikura, “Development of dispersion compensation cable using reverse dispersion fiber,” in Proceedings of the Fifth Asia-Pacific Conference on Communications, 1999 and Fourth Optoelectronics and Communications Conference (APCC/OECC, 1999), Vol. 2, pp. 1590-1593.
[CrossRef]

Offrein, B. J.

R. Germann, H. W. M. Salemnik, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237-2241 (2000).
[CrossRef]

Othonos, A.

A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30, 1972-1974 (1994).
[CrossRef]

Ouellette, F.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation using a fiber grating in transmission,” Electron. Lett. 32, 1610-1611 (1996).
[CrossRef]

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. J. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings,” Electron. Lett. 31, 899-901, (1995).
[CrossRef]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long superstructure Bragg gratings in optical fibers,” Electron. Lett. 30, 1620-1622 (1994).
[CrossRef]

Patterson, D. B.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse reconstruction,” J. Lightwave Technol. 15, 1303-1313 (1997).
[CrossRef]

Peng, R. W.

R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasi-periodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063-3065 (2002).
[CrossRef]

X. Q. Huang, S. S. Jiang, R. W. Peng, and A. Hu, “Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers,” Phys. Rev. E 59, 245104 (2001).

Placido, F.

D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal,” Opt. Commun. 198, 273-279 (2001).
[CrossRef]

Poladian, L.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long superstructure Bragg gratings in optical fibers,” Electron. Lett. 30, 1620-1622 (1994).
[CrossRef]

Qiu, F.

R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasi-periodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063-3065 (2002).
[CrossRef]

Randall, G.

D. J. Moss, M. Lamont, S. McLaugthlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, “Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons,” IEEE Photon. Technol. Lett. 15, 730-732(2003).
[CrossRef]

Rhead, P.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

Rostami, A.

Salemnik, H. W. M.

R. Germann, H. W. M. Salemnik, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237-2241 (2000).
[CrossRef]

Scarano, D.

L. D. Garrett, A. H. Gnauck, F. Forghieri, V. Gusmeroli, and D. Scarano, “16-10 Gb/s WDM transmission over 840 km SMF using eleven broadband chirped fiber gratings,” IEEE Photon. Technol. Lett. 11, 484-486 (1999).
[CrossRef]

Shu, X.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

Sibilia, C.

C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasi-periodic (self-similar) structures,” Pure Appl. Opt. 7, 383-391 (1998).
[CrossRef]

Singh, K.

Stephens, T.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation using a fiber grating in transmission,” Electron. Lett. 32, 1610-1611 (1996).
[CrossRef]

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. J. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings,” Electron. Lett. 31, 899-901, (1995).
[CrossRef]

Sugden, K.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

Sugizaki, R.

M. Morimoto, I. Kobayashi, H. Hiramatsu, K. Mukasa, R. Sugizaki, Y. Suzuki, and Y. Kamikura, “Development of dispersion compensation cable using reverse dispersion fiber,” in Proceedings of the Fifth Asia-Pacific Conference on Communications, 1999 and Fourth Optoelectronics and Communications Conference (APCC/OECC, 1999), Vol. 2, pp. 1590-1593.
[CrossRef]

Sun, J.

Sutherland, B.

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633-636 (1994).
[CrossRef] [PubMed]

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization in optics: quasi-periodic media,” Phys. Rev. Lett. 58, 2436-2438(1987).
[CrossRef] [PubMed]

Suzuki, Y.

M. Morimoto, I. Kobayashi, H. Hiramatsu, K. Mukasa, R. Sugizaki, Y. Suzuki, and Y. Kamikura, “Development of dispersion compensation cable using reverse dispersion fiber,” in Proceedings of the Fifth Asia-Pacific Conference on Communications, 1999 and Fourth Optoelectronics and Communications Conference (APCC/OECC, 1999), Vol. 2, pp. 1590-1593.
[CrossRef]

Taylor, P. C.

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633-636 (1994).
[CrossRef] [PubMed]

Wang, M.

R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasi-periodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063-3065 (2002).
[CrossRef]

Williams, J. A. R.

J. A. R. Williams, L. A. Everall, I. Bennion, and N. J. Doran, “Fiber Bragg grating fabrication for dispersion slope compensation,” IEEE Photon. Technol. Lett. 8, 1187-1189(1996).
[CrossRef]

Xie, S.

Yagi, T.

M. Kazunori and T. Yagi, “Dispersion flat and low nonlinear optical link with new type of reverse dispersion fiber (RDF-60),” in Digest of Optical Fiber Communication Conference (Optical Society of America, 2001), paper TuH7.

Yang, X.

X. Yang, Y. Liu, and X. Fu, “Transmission properties of light through the Fibonacci-class multilayers,” Phys. Rev. B 59, 4546-4548 (1999).
[CrossRef]

Zarifkar, A.

Appl. Opt.

Appl. Phys. Lett.

R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasi-periodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063-3065 (2002).
[CrossRef]

E. Macia, “Optical engineering with Fibonacci dielectric multilayers,” Appl. Phys. Lett. 73, 3330-3332 (1998).
[CrossRef]

Electron. Lett.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation using a fiber grating in transmission,” Electron. Lett. 32, 1610-1611 (1996).
[CrossRef]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long superstructure Bragg gratings in optical fibers,” Electron. Lett. 30, 1620-1622 (1994).
[CrossRef]

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. J. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings,” Electron. Lett. 31, 899-901, (1995).
[CrossRef]

A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30, 1972-1974 (1994).
[CrossRef]

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891-1893 (1997).
[CrossRef]

Ferroelectrics

E. Macia, “Optical applications of Fibonacci dielectric multilayers,” Ferroelectrics 250, 401-404 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

L. D. Garrett, A. H. Gnauck, F. Forghieri, V. Gusmeroli, and D. Scarano, “16-10 Gb/s WDM transmission over 840 km SMF using eleven broadband chirped fiber gratings,” IEEE Photon. Technol. Lett. 11, 484-486 (1999).
[CrossRef]

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003).
[CrossRef]

D. J. Moss, M. Lamont, S. McLaugthlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, “Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons,” IEEE Photon. Technol. Lett. 15, 730-732(2003).
[CrossRef]

J. A. R. Williams, L. A. Everall, I. Bennion, and N. J. Doran, “Fiber Bragg grating fabrication for dispersion slope compensation,” IEEE Photon. Technol. Lett. 8, 1187-1189(1996).
[CrossRef]

J. Electrochem. Soc.

R. Germann, H. W. M. Salemnik, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237-2241 (2000).
[CrossRef]

J. Lightwave Technol.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse reconstruction,” J. Lightwave Technol. 15, 1303-1313 (1997).
[CrossRef]

G. Lenz and C. K. Madsen, “General optical all-pass filter structures for dispersion control in WDM systems,” J. Lightwave Technol. 17, 1248-1254 (1999).
[CrossRef]

J. Phys. D

V. Agarwal and M. E Mora-Romes, “Optical characterization of polytype Fibonacci and Thue-Morse quasiregular dielectric structures made of porous silicon multilayers,” J. Phys. D 40, 3203-3211 (2007).
[CrossRef]

Nanotechnology

S. H. Kim, H. Hiroshima, and M. Komuro, “Photo-nanoimprint lithography combined with thermal treatment to improve resist pattern line-edge roughness,” Nanotechnology 17, 2219-2222 (2006).
[CrossRef]

Opt. Commun.

D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal,” Opt. Commun. 198, 273-279 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

X. Yang, Y. Liu, and X. Fu, “Transmission properties of light through the Fibonacci-class multilayers,” Phys. Rev. B 59, 4546-4548 (1999).
[CrossRef]

E. Macia, “Exploiting quasi-periodic order in the design of optical devices,” Phys. Rev. B 63, 205421 (2001).
[CrossRef]

Phys. Rev. E

X. Q. Huang, S. S. Jiang, R. W. Peng, and A. Hu, “Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers,” Phys. Rev. E 59, 245104 (2001).

Phys. Rev. Lett.

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization in optics: quasi-periodic media,” Phys. Rev. Lett. 58, 2436-2438(1987).
[CrossRef] [PubMed]

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633-636 (1994).
[CrossRef] [PubMed]

Pure Appl. Opt.

C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasi-periodic (self-similar) structures,” Pure Appl. Opt. 7, 383-391 (1998).
[CrossRef]

Other

M. Morimoto, I. Kobayashi, H. Hiramatsu, K. Mukasa, R. Sugizaki, Y. Suzuki, and Y. Kamikura, “Development of dispersion compensation cable using reverse dispersion fiber,” in Proceedings of the Fifth Asia-Pacific Conference on Communications, 1999 and Fourth Optoelectronics and Communications Conference (APCC/OECC, 1999), Vol. 2, pp. 1590-1593.
[CrossRef]

M. Kazunori and T. Yagi, “Dispersion flat and low nonlinear optical link with new type of reverse dispersion fiber (RDF-60),” in Digest of Optical Fiber Communication Conference (Optical Society of America, 2001), paper TuH7.

R. Kashyap, “Chirped fibre Bragg gratings for WDM applications,” in Digest of Optical Amplifiers and Their Applications (Optical Society of America, 1997), paper FAW12.

M. Ibsen, M. K. Durkin, K. Ennser, M. J. Cole, and R. I. Laming, “Long continuously chirped fiber Bragg gratings for compensation of linearand 3rd order dispersion,” in Proceedings of the European Conference on Optical Communications (1997), pp. 49-52.

H. A. Macleod, Thin Film Optical Filter, 2nd ed. (McGraw-Hill, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Reflectivity spectra for (a)  F C ( 3 , 50 ) with m = 7 and (b)  F C ( 4 , 35 ) with m = 1 . Other parameters are given in Table 1.

Fig. 2
Fig. 2

Wavelength dependence of reflectivity phase for three middle bands of F C ( 3 , 50 ) of Fig. 1a centered about (a)  1541.2 nm , (b)  1550 nm , and (c)  1558.9 nm .

Fig. 3
Fig. 3

Wavelength dependence GD for three middle bands of F C ( 3 , 50 ) of Fig. 1a centered about (a)  1541.2 nm , (b)  1550 nm , and (c)  1558.9 nm .

Fig. 4
Fig. 4

Wavelength dependence of GVD for three middle bands of F C ( 3 , 50 ) of Fig. 1a, centered about (a)  1541.2 nm , (b)  1550 nm , and (c)  1558.9 nm .

Fig. 5
Fig. 5

(a) Reflectivity and (b) GD spectra for a C- F C ( 3 , 50 ) with similar parameters as those of Fig. 1, except for α = - 1 and β = 1000 .

Fig. 6
Fig. 6

(a) Reflectivity and (b) GD profile for a CA- F C ( 3 , 50 ) with n 0 = 1.4 , Δ n a = 0.2 , Δ n b = 0.35 , σ = 0.25 and h = 1 , other parameters are same as those for Fig. 5.

Fig. 7
Fig. 7

(a) Reflectivity and (b) GD profile for a CA- F C ( 4 , 37 ) with m = 3 and λ 0 = 1550 nm . Other parameters are given in Table 4.

Fig. 8
Fig. 8

Graphic illustration of the accuracy of the linearity of the GD as a function of λ for three middle passbands of Fig. 7, centered about (a)  λ = 1542.17 nm , (b)  λ = 1549.78 nm , and (c)  λ = 1556.58 nm . The dotted straight line shown in each figure is a reference line.

Tables (4)

Tables Icon

Table 1 Comparison of FSRs and the Total Physical Lengths L for F C ( 3 , 50 ) and F C ( 4 , 35 ) a

Tables Icon

Table 2 Lengths and Spectral Properties of AC- F C ( 3 , 50 ) for Different Values of m a

Tables Icon

Table 3 Lengths and spectral properties of CA- F C ( 3 , n ) for Four Different Values of n a

Tables Icon

Table 4 Lengths and spectral properties of CA- F C ( 4 , n ) for Various n and m a

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

F C ( 1 , n ) = B , F C ( 2 , n ) = B n - 1 A , F C ( 3 , n ) = ( B n - 1 A ) n B , F C ( 4 , n ) = [ F C ( 3 , n ) ] n F C ( 2 , n ) = [ ( B n - 1 A ) n B ] n B n - 1 A , F C ( j , n ) = [ F C ( j - 1 , n ) ] n [ F C ( j - 2 , n ) ] ,
F C ( 3 , n ) = ( B B n - 1 A ) ( B B n - 1 A ) n B ,
F C ( 4 , n ) = ( B B n - 1 A ) ( B B n - 1 A ) n B ( B B n - 1 A ) ( B B n - 1 A ) n B n B B n - 1 A ,
τ g - d ϕ d ω = λ 2 2 π c d ϕ d λ ,
GVD d τ g d λ = - 2 π c λ 2 d τ g d ω = - 2 π c λ 2 d 2 ϕ d ω 2 .
D ( ps · n m - 1 · k m - 1 ) 1 L d τ g d λ 1 L Δ τ Δ λ ,
C ( z ) = α β z L + 1 ,
d a , b ( z ) = d a 0 , b 0 C ( z ) .
g ( z ) = h × exp [ - ( z - 0.5 L σ L ) 2 ] ,
n a , b ( z ) = n 0 + Δ n a , b × g ( z ) ,

Metrics