Abstract

Irradiance during total lunar eclipses is simulated using a pinhole model. The Moon is illuminated by direct sunlight that is refracted into the Earth’s shadow as it passes through the atmosphere at the terminator but is depleted by scattering by molecules, extinction by aerosol particles, absorption by ozone, and obstruction by clouds and elevated land. On a spherical, sea-level Earth, and a cloudless, molecular atmosphere with no ozone, the eclipsed Moon appears red and calculated irradiance at the center of the umbra is reduced by a factor of about 2400 from direct moonlight. Selective absorption mainly of light around 600nm by stratospheric ozone turns the periphery of the umbra pale blue. Typical distributions of aerosol particles, ozone, mountains, and clouds around the terminator reduce irradiance by an additional factor of the order of 100.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Link, “Lunar eclipses,” in Physics and Astronomy of the Moon, Z. Kopal, ed., 1st ed. (Academic, 1962), pp. 161-229; more recent mostly identical version in Z. Kopal, ed., Advances in Astronomy and Astrophysics (Academic, 1972), Vol. 9, pp. 68-144.
  2. R. Gerharz, “Photometric brightness asymmetry during a lunar eclipse,” Arch. Met. Geoph. Biokl. Ser. A 18, 221-226(1969).
    [CrossRef]
  3. R. W. Shorthill, “Infrared atlas charts of the eclipsed Moon,” Moon 7, 22-45 (1973).
    [CrossRef]
  4. F. Link, “Some remarks on Danjon's law,” Moon 11, 137-140(1974).
    [CrossRef]
  5. N. Sekiguchi, “Photometry of the lunar surface during lunar eclipses,” Moon Planets 23, 99-107 (1980).
  6. N. Sekiguchi, “Abnormally dark lunar eclipse on December 30, 1982,” Moon Planets 29, 195-198 (1983).
    [CrossRef]
  7. R. A. Keen, “Volcanic aerosols and lunar eclipses,” Science 222, 1011-1013 (1983).
    [CrossRef] [PubMed]
  8. T. Nakamura, T. Hirayama, and M. Noguchi, “A new photographic method for mapping lunar eclipse shadow,” Earth, Moon, Planets 35, 55-71 (1986).
    [CrossRef]
  9. S. Dvorak, “Serendipitous photometric observations of the October 2004 Lunar eclipse,” J. Am. Ass. Var. Star Observers 34, 72-75 (2006).
  10. A. Mallama, “Eclipses, atmospheres and global change,” self-published, Bowie, Maryland (1996), contact: Anthony_Mallama@raytheon.com
  11. A. Mallama, “Light curve model for the Galilean satellites during Jovian eclipses,” Icarus 92, 324-331 (1991).
    [CrossRef]
  12. A. Mallama, “CCD photometry for Jovian eclipses of the Galilean satellites,” Icarus 97, 298-302 (1992).
    [CrossRef]
  13. A. Mallama, B. A. Krobusek, D. F. Collins, P. Nelson, and J. Park, “The radius of Jupiter and its polar haze,” Icarus 144, 99-103 (2000).
    [CrossRef]
  14. A. Mallama, “Predictions for eclipses of Nereid by Neptune,” Icarus 187, 620-622 (2007).
    [CrossRef]
  15. O. S. Ugolnikov and I. A. Maslov, “Atmospheric aerosol limb scanning based on the lunar eclipses photometry,” J. Quant. Spectrosc. Radiat. Transfer 102, 499-512 (2006).
    [CrossRef]
  16. O. S. Ugolnikov and I. A. Maslov, “Altitude and latitude distribution of atmospheric aerosol and water vapor from the narrow-band lunar eclipse photometry,” preprint server http://eprintweb.org/S/authors/All/ug/Ugolnikov, arXiv 0706.0660 (June 2007).
  17. N. Hernitschek, E. Schmidt, and M. Vollmer, “Lunar eclipse photometry: absolute luminance measurements and modeling,” Appl. Opt. 47, H62-H71 (2008).
  18. http://www.skyandtelescope.com/community/gallery/skyevents/15836532.html, “Photo gallery: total lunar eclipse, 2-20-2008,” Sky Telesc. (April 2008).
  19. See the paper by S. Gedzelman and M. Vollmer, “Simulating irradiance and color during lunar eclipses using satellite data,” elsewhere in the Light and Color feature.
  20. K. P. Möllmann and M. Vollmer, “Measurements and predictions of the illuminance during a solar eclipse,” Eur. J. Phys. 27, 1299-1314 (2006).
    [CrossRef]
  21. A. I. Mahan, “Astronomical refraction--some history and theories,” Appl. Opt. 1, 497-511 (1962).
    [CrossRef]
  22. A. D. Wittmann, “Astronomical refraction: formulas for all zenith distances,” Astron. Nachr. 318/5, 305-312 (1997).
    [CrossRef]
  23. A. T. Young, “Air mass and refraction,” Appl. Opt. 33, 1108-1110 (1994).
    [PubMed]
  24. L. K. Kristensen, “Astronomical refraction and airmass,” Astron. Nachr. 319, 193-198 (1998).
    [CrossRef]
  25. M. Vollmer and S. D. Gedzelman, “Colours of the Sun and Moon: the role of the optical air mass,” Eur. J. Phys. 27, 299-309 (2006).
    [CrossRef]
  26. http://history.nasa.gov/SP-168/section2b.htmm, see p. 128.
  27. Sunrise, Earth Limb, SW Pacific Ocean, Photo STS047-54-018 http://images.jsc.nasa.gov/.
  28. E. C. Y. Inn and Y. Tanaka, “Absorption coefficient of ozone in the ultraviolet and visible regions,” J. Opt. Soc. Am. 43, 870-873 (1953).
    [CrossRef]
  29. A. M. Amoruso, C. A. Di Sarra, and G. Fiocco, “Absorption cross sections of ozone in the 590- to 610-nm region at T=230 K and T=299 K,” J. Geophys. Res. 95, 20565-20568, (1990).
    [CrossRef]
  30. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844, (1998).
    [CrossRef]
  31. O. Dubovik, B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
    [CrossRef]
  32. R. W. Bergstrom, P. Pilewskie, B. Schmid, and P. B. Russell, “Estimates of the spectral aerosol single scattering albedo and aerosol radiative effects during SAFARI 2000,” J. Geophys. Res. 108, 8474 (2003), doi:10.1029/2002JD002435..
    [CrossRef]
  33. P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002).
    [CrossRef]

2007 (1)

A. Mallama, “Predictions for eclipses of Nereid by Neptune,” Icarus 187, 620-622 (2007).
[CrossRef]

2006 (4)

O. S. Ugolnikov and I. A. Maslov, “Atmospheric aerosol limb scanning based on the lunar eclipses photometry,” J. Quant. Spectrosc. Radiat. Transfer 102, 499-512 (2006).
[CrossRef]

K. P. Möllmann and M. Vollmer, “Measurements and predictions of the illuminance during a solar eclipse,” Eur. J. Phys. 27, 1299-1314 (2006).
[CrossRef]

S. Dvorak, “Serendipitous photometric observations of the October 2004 Lunar eclipse,” J. Am. Ass. Var. Star Observers 34, 72-75 (2006).

M. Vollmer and S. D. Gedzelman, “Colours of the Sun and Moon: the role of the optical air mass,” Eur. J. Phys. 27, 299-309 (2006).
[CrossRef]

2003 (1)

R. W. Bergstrom, P. Pilewskie, B. Schmid, and P. B. Russell, “Estimates of the spectral aerosol single scattering albedo and aerosol radiative effects during SAFARI 2000,” J. Geophys. Res. 108, 8474 (2003), doi:10.1029/2002JD002435..
[CrossRef]

2002 (2)

P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002).
[CrossRef]

O. Dubovik, B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

2000 (1)

A. Mallama, B. A. Krobusek, D. F. Collins, P. Nelson, and J. Park, “The radius of Jupiter and its polar haze,” Icarus 144, 99-103 (2000).
[CrossRef]

1998 (2)

L. K. Kristensen, “Astronomical refraction and airmass,” Astron. Nachr. 319, 193-198 (1998).
[CrossRef]

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844, (1998).
[CrossRef]

1997 (1)

A. D. Wittmann, “Astronomical refraction: formulas for all zenith distances,” Astron. Nachr. 318/5, 305-312 (1997).
[CrossRef]

1994 (1)

1992 (1)

A. Mallama, “CCD photometry for Jovian eclipses of the Galilean satellites,” Icarus 97, 298-302 (1992).
[CrossRef]

1991 (1)

A. Mallama, “Light curve model for the Galilean satellites during Jovian eclipses,” Icarus 92, 324-331 (1991).
[CrossRef]

1990 (1)

A. M. Amoruso, C. A. Di Sarra, and G. Fiocco, “Absorption cross sections of ozone in the 590- to 610-nm region at T=230 K and T=299 K,” J. Geophys. Res. 95, 20565-20568, (1990).
[CrossRef]

1986 (1)

T. Nakamura, T. Hirayama, and M. Noguchi, “A new photographic method for mapping lunar eclipse shadow,” Earth, Moon, Planets 35, 55-71 (1986).
[CrossRef]

1983 (2)

N. Sekiguchi, “Abnormally dark lunar eclipse on December 30, 1982,” Moon Planets 29, 195-198 (1983).
[CrossRef]

R. A. Keen, “Volcanic aerosols and lunar eclipses,” Science 222, 1011-1013 (1983).
[CrossRef] [PubMed]

1980 (1)

N. Sekiguchi, “Photometry of the lunar surface during lunar eclipses,” Moon Planets 23, 99-107 (1980).

1974 (1)

F. Link, “Some remarks on Danjon's law,” Moon 11, 137-140(1974).
[CrossRef]

1973 (1)

R. W. Shorthill, “Infrared atlas charts of the eclipsed Moon,” Moon 7, 22-45 (1973).
[CrossRef]

1969 (1)

R. Gerharz, “Photometric brightness asymmetry during a lunar eclipse,” Arch. Met. Geoph. Biokl. Ser. A 18, 221-226(1969).
[CrossRef]

1962 (1)

1953 (1)

Amoruso, A. M.

A. M. Amoruso, C. A. Di Sarra, and G. Fiocco, “Absorption cross sections of ozone in the 590- to 610-nm region at T=230 K and T=299 K,” J. Geophys. Res. 95, 20565-20568, (1990).
[CrossRef]

Bergstrom, R. W.

R. W. Bergstrom, P. Pilewskie, B. Schmid, and P. B. Russell, “Estimates of the spectral aerosol single scattering albedo and aerosol radiative effects during SAFARI 2000,” J. Geophys. Res. 108, 8474 (2003), doi:10.1029/2002JD002435..
[CrossRef]

P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002).
[CrossRef]

Carricok, C. M.

P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002).
[CrossRef]

Collins, D. F.

A. Mallama, B. A. Krobusek, D. F. Collins, P. Nelson, and J. Park, “The radius of Jupiter and its polar haze,” Icarus 144, 99-103 (2000).
[CrossRef]

Di Sarra, C. A.

A. M. Amoruso, C. A. Di Sarra, and G. Fiocco, “Absorption cross sections of ozone in the 590- to 610-nm region at T=230 K and T=299 K,” J. Geophys. Res. 95, 20565-20568, (1990).
[CrossRef]

Dubovik, O.

O. Dubovik, B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

Dvorak, S.

S. Dvorak, “Serendipitous photometric observations of the October 2004 Lunar eclipse,” J. Am. Ass. Var. Star Observers 34, 72-75 (2006).

Eck, T. F.

O. Dubovik, B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

Fiocco, G.

A. M. Amoruso, C. A. Di Sarra, and G. Fiocco, “Absorption cross sections of ozone in the 590- to 610-nm region at T=230 K and T=299 K,” J. Geophys. Res. 95, 20565-20568, (1990).
[CrossRef]

Gedzelman, S.

See the paper by S. Gedzelman and M. Vollmer, “Simulating irradiance and color during lunar eclipses using satellite data,” elsewhere in the Light and Color feature.

Gedzelman, S. D.

M. Vollmer and S. D. Gedzelman, “Colours of the Sun and Moon: the role of the optical air mass,” Eur. J. Phys. 27, 299-309 (2006).
[CrossRef]

Gerharz, R.

R. Gerharz, “Photometric brightness asymmetry during a lunar eclipse,” Arch. Met. Geoph. Biokl. Ser. A 18, 221-226(1969).
[CrossRef]

Hartley, S.

P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002).
[CrossRef]

Hernitschek, N.

N. Hernitschek, E. Schmidt, and M. Vollmer, “Lunar eclipse photometry: absolute luminance measurements and modeling,” Appl. Opt. 47, H62-H71 (2008).

Hess, M.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844, (1998).
[CrossRef]

Hirayama, T.

T. Nakamura, T. Hirayama, and M. Noguchi, “A new photographic method for mapping lunar eclipse shadow,” Earth, Moon, Planets 35, 55-71 (1986).
[CrossRef]

Hobbs, P. V.

P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002).
[CrossRef]

Holben, B. N.

O. Dubovik, B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

Inn, E. C. Y.

Kaufman, Y. J.

O. Dubovik, B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

Keen, R. A.

R. A. Keen, “Volcanic aerosols and lunar eclipses,” Science 222, 1011-1013 (1983).
[CrossRef] [PubMed]

King, M. D.

O. Dubovik, B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

Koepke, P.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844, (1998).
[CrossRef]

Kristensen, L. K.

L. K. Kristensen, “Astronomical refraction and airmass,” Astron. Nachr. 319, 193-198 (1998).
[CrossRef]

Krobusek, B. A.

A. Mallama, B. A. Krobusek, D. F. Collins, P. Nelson, and J. Park, “The radius of Jupiter and its polar haze,” Icarus 144, 99-103 (2000).
[CrossRef]

Link, F.

F. Link, “Some remarks on Danjon's law,” Moon 11, 137-140(1974).
[CrossRef]

F. Link, “Lunar eclipses,” in Physics and Astronomy of the Moon, Z. Kopal, ed., 1st ed. (Academic, 1962), pp. 161-229; more recent mostly identical version in Z. Kopal, ed., Advances in Astronomy and Astrophysics (Academic, 1972), Vol. 9, pp. 68-144.

Livingston, J. M.

P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002).
[CrossRef]

Mahan, A. I.

Mallama, A.

A. Mallama, “Predictions for eclipses of Nereid by Neptune,” Icarus 187, 620-622 (2007).
[CrossRef]

A. Mallama, B. A. Krobusek, D. F. Collins, P. Nelson, and J. Park, “The radius of Jupiter and its polar haze,” Icarus 144, 99-103 (2000).
[CrossRef]

A. Mallama, “CCD photometry for Jovian eclipses of the Galilean satellites,” Icarus 97, 298-302 (1992).
[CrossRef]

A. Mallama, “Light curve model for the Galilean satellites during Jovian eclipses,” Icarus 92, 324-331 (1991).
[CrossRef]

A. Mallama, “Eclipses, atmospheres and global change,” self-published, Bowie, Maryland (1996), contact: Anthony_Mallama@raytheon.com

Maslov, I. A.

O. S. Ugolnikov and I. A. Maslov, “Atmospheric aerosol limb scanning based on the lunar eclipses photometry,” J. Quant. Spectrosc. Radiat. Transfer 102, 499-512 (2006).
[CrossRef]

O. S. Ugolnikov and I. A. Maslov, “Altitude and latitude distribution of atmospheric aerosol and water vapor from the narrow-band lunar eclipse photometry,” preprint server http://eprintweb.org/S/authors/All/ug/Ugolnikov, arXiv 0706.0660 (June 2007).

McIntosh, D. M.

P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002).
[CrossRef]

Möllmann, K. P.

K. P. Möllmann and M. Vollmer, “Measurements and predictions of the illuminance during a solar eclipse,” Eur. J. Phys. 27, 1299-1314 (2006).
[CrossRef]

Nakamura, T.

T. Nakamura, T. Hirayama, and M. Noguchi, “A new photographic method for mapping lunar eclipse shadow,” Earth, Moon, Planets 35, 55-71 (1986).
[CrossRef]

Nelson, P.

A. Mallama, B. A. Krobusek, D. F. Collins, P. Nelson, and J. Park, “The radius of Jupiter and its polar haze,” Icarus 144, 99-103 (2000).
[CrossRef]

Noguchi, M.

T. Nakamura, T. Hirayama, and M. Noguchi, “A new photographic method for mapping lunar eclipse shadow,” Earth, Moon, Planets 35, 55-71 (1986).
[CrossRef]

Noone, K. J.

P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002).
[CrossRef]

Öströml, E.

P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002).
[CrossRef]

Park, J.

A. Mallama, B. A. Krobusek, D. F. Collins, P. Nelson, and J. Park, “The radius of Jupiter and its polar haze,” Icarus 144, 99-103 (2000).
[CrossRef]

Pilewskie, P.

R. W. Bergstrom, P. Pilewskie, B. Schmid, and P. B. Russell, “Estimates of the spectral aerosol single scattering albedo and aerosol radiative effects during SAFARI 2000,” J. Geophys. Res. 108, 8474 (2003), doi:10.1029/2002JD002435..
[CrossRef]

Quinn, P. K.

P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002).
[CrossRef]

Ramirez, S. A.

P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002).
[CrossRef]

Redemann, J.

P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002).
[CrossRef]

Remer, L.

P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002).
[CrossRef]

Rood, M. J.

P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002).
[CrossRef]

Russell, P. B.

R. W. Bergstrom, P. Pilewskie, B. Schmid, and P. B. Russell, “Estimates of the spectral aerosol single scattering albedo and aerosol radiative effects during SAFARI 2000,” J. Geophys. Res. 108, 8474 (2003), doi:10.1029/2002JD002435..
[CrossRef]

P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002).
[CrossRef]

Schmid, B.

R. W. Bergstrom, P. Pilewskie, B. Schmid, and P. B. Russell, “Estimates of the spectral aerosol single scattering albedo and aerosol radiative effects during SAFARI 2000,” J. Geophys. Res. 108, 8474 (2003), doi:10.1029/2002JD002435..
[CrossRef]

P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002).
[CrossRef]

Schmidt, E.

N. Hernitschek, E. Schmidt, and M. Vollmer, “Lunar eclipse photometry: absolute luminance measurements and modeling,” Appl. Opt. 47, H62-H71 (2008).

Schult, I.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844, (1998).
[CrossRef]

Sekiguchi, N.

N. Sekiguchi, “Abnormally dark lunar eclipse on December 30, 1982,” Moon Planets 29, 195-198 (1983).
[CrossRef]

N. Sekiguchi, “Photometry of the lunar surface during lunar eclipses,” Moon Planets 23, 99-107 (1980).

Shorthill, R. W.

R. W. Shorthill, “Infrared atlas charts of the eclipsed Moon,” Moon 7, 22-45 (1973).
[CrossRef]

Slutsker, I.

O. Dubovik, B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

Smirnov, A.

O. Dubovik, B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

Tanaka, Y.

Tanre, D.

O. Dubovik, B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

Ugolnikov, O. S.

O. S. Ugolnikov and I. A. Maslov, “Atmospheric aerosol limb scanning based on the lunar eclipses photometry,” J. Quant. Spectrosc. Radiat. Transfer 102, 499-512 (2006).
[CrossRef]

O. S. Ugolnikov and I. A. Maslov, “Altitude and latitude distribution of atmospheric aerosol and water vapor from the narrow-band lunar eclipse photometry,” preprint server http://eprintweb.org/S/authors/All/ug/Ugolnikov, arXiv 0706.0660 (June 2007).

Vollmer, M.

K. P. Möllmann and M. Vollmer, “Measurements and predictions of the illuminance during a solar eclipse,” Eur. J. Phys. 27, 1299-1314 (2006).
[CrossRef]

M. Vollmer and S. D. Gedzelman, “Colours of the Sun and Moon: the role of the optical air mass,” Eur. J. Phys. 27, 299-309 (2006).
[CrossRef]

See the paper by S. Gedzelman and M. Vollmer, “Simulating irradiance and color during lunar eclipses using satellite data,” elsewhere in the Light and Color feature.

N. Hernitschek, E. Schmidt, and M. Vollmer, “Lunar eclipse photometry: absolute luminance measurements and modeling,” Appl. Opt. 47, H62-H71 (2008).

von Hoyningen-Huene, W.

P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002).
[CrossRef]

Wittmann, A. D.

A. D. Wittmann, “Astronomical refraction: formulas for all zenith distances,” Astron. Nachr. 318/5, 305-312 (1997).
[CrossRef]

Young, A. T.

Appl. Opt. (2)

Arch. Met. Geoph. Biokl. Ser. A (1)

R. Gerharz, “Photometric brightness asymmetry during a lunar eclipse,” Arch. Met. Geoph. Biokl. Ser. A 18, 221-226(1969).
[CrossRef]

Astron. Nachr. (2)

A. D. Wittmann, “Astronomical refraction: formulas for all zenith distances,” Astron. Nachr. 318/5, 305-312 (1997).
[CrossRef]

L. K. Kristensen, “Astronomical refraction and airmass,” Astron. Nachr. 319, 193-198 (1998).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844, (1998).
[CrossRef]

Earth, Moon, Planets (1)

T. Nakamura, T. Hirayama, and M. Noguchi, “A new photographic method for mapping lunar eclipse shadow,” Earth, Moon, Planets 35, 55-71 (1986).
[CrossRef]

Eur. J. Phys. (2)

K. P. Möllmann and M. Vollmer, “Measurements and predictions of the illuminance during a solar eclipse,” Eur. J. Phys. 27, 1299-1314 (2006).
[CrossRef]

M. Vollmer and S. D. Gedzelman, “Colours of the Sun and Moon: the role of the optical air mass,” Eur. J. Phys. 27, 299-309 (2006).
[CrossRef]

Icarus (4)

A. Mallama, “Light curve model for the Galilean satellites during Jovian eclipses,” Icarus 92, 324-331 (1991).
[CrossRef]

A. Mallama, “CCD photometry for Jovian eclipses of the Galilean satellites,” Icarus 97, 298-302 (1992).
[CrossRef]

A. Mallama, B. A. Krobusek, D. F. Collins, P. Nelson, and J. Park, “The radius of Jupiter and its polar haze,” Icarus 144, 99-103 (2000).
[CrossRef]

A. Mallama, “Predictions for eclipses of Nereid by Neptune,” Icarus 187, 620-622 (2007).
[CrossRef]

J. Am. Ass. Var. Star Observers (1)

S. Dvorak, “Serendipitous photometric observations of the October 2004 Lunar eclipse,” J. Am. Ass. Var. Star Observers 34, 72-75 (2006).

J. Atmos. Sci. (2)

O. Dubovik, B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002).
[CrossRef]

J. Geophys. Res. (2)

R. W. Bergstrom, P. Pilewskie, B. Schmid, and P. B. Russell, “Estimates of the spectral aerosol single scattering albedo and aerosol radiative effects during SAFARI 2000,” J. Geophys. Res. 108, 8474 (2003), doi:10.1029/2002JD002435..
[CrossRef]

A. M. Amoruso, C. A. Di Sarra, and G. Fiocco, “Absorption cross sections of ozone in the 590- to 610-nm region at T=230 K and T=299 K,” J. Geophys. Res. 95, 20565-20568, (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

O. S. Ugolnikov and I. A. Maslov, “Atmospheric aerosol limb scanning based on the lunar eclipses photometry,” J. Quant. Spectrosc. Radiat. Transfer 102, 499-512 (2006).
[CrossRef]

Moon (2)

R. W. Shorthill, “Infrared atlas charts of the eclipsed Moon,” Moon 7, 22-45 (1973).
[CrossRef]

F. Link, “Some remarks on Danjon's law,” Moon 11, 137-140(1974).
[CrossRef]

Moon Planets (2)

N. Sekiguchi, “Photometry of the lunar surface during lunar eclipses,” Moon Planets 23, 99-107 (1980).

N. Sekiguchi, “Abnormally dark lunar eclipse on December 30, 1982,” Moon Planets 29, 195-198 (1983).
[CrossRef]

Science (1)

R. A. Keen, “Volcanic aerosols and lunar eclipses,” Science 222, 1011-1013 (1983).
[CrossRef] [PubMed]

Sky Telesc. (1)

http://www.skyandtelescope.com/community/gallery/skyevents/15836532.html, “Photo gallery: total lunar eclipse, 2-20-2008,” Sky Telesc. (April 2008).

Other (7)

See the paper by S. Gedzelman and M. Vollmer, “Simulating irradiance and color during lunar eclipses using satellite data,” elsewhere in the Light and Color feature.

A. Mallama, “Eclipses, atmospheres and global change,” self-published, Bowie, Maryland (1996), contact: Anthony_Mallama@raytheon.com

F. Link, “Lunar eclipses,” in Physics and Astronomy of the Moon, Z. Kopal, ed., 1st ed. (Academic, 1962), pp. 161-229; more recent mostly identical version in Z. Kopal, ed., Advances in Astronomy and Astrophysics (Academic, 1972), Vol. 9, pp. 68-144.

O. S. Ugolnikov and I. A. Maslov, “Altitude and latitude distribution of atmospheric aerosol and water vapor from the narrow-band lunar eclipse photometry,” preprint server http://eprintweb.org/S/authors/All/ug/Ugolnikov, arXiv 0706.0660 (June 2007).

N. Hernitschek, E. Schmidt, and M. Vollmer, “Lunar eclipse photometry: absolute luminance measurements and modeling,” Appl. Opt. 47, H62-H71 (2008).

http://history.nasa.gov/SP-168/section2b.htmm, see p. 128.

Sunrise, Earth Limb, SW Pacific Ocean, Photo STS047-54-018 http://images.jsc.nasa.gov/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Geometry of the Sun–Earth–Moon system (not drawn to scale). The radius of the Earth umbra and penumbra depend on the distances at the times of an eclipse and are roughly 4600 and 8200 km , respectively.

Fig. 2
Fig. 2

Normalized irradiance in the penumbra of Earth given by the visible fraction of the Sun’s area, computed from a partial eclipse model. 0, 41.2, and 73   arc min correspond to center of umbra, edge of umbra, and edge of penumbra.

Fig. 3
Fig. 3

Geometry of images at Moon orbit for pinholes in the atmosphere. Refraction shifts the circular image of the Sun by an angle ψ ( z min ) or a distance y = d Earth-Moon ψ ( z min ) , where z min is the minimum height of the pinhole in the Earth’s atmosphere. The dimensions are not drawn to scale.

Fig. 4
Fig. 4

Projection of the Sun images ( r img = 1790 km ) of single pinholes at three different heights z min along a radial line in the Earth’s atmosphere onto the umbra ( r umb = 4600 km ) of the Earth.

Fig. 5
Fig. 5

Projection of the Sun images due to pinholes in the atmosphere onto the umbra. The geometry refers to the region of the atmosphere that contributes to the radiance at any point 100 km from the edge of the umbra. (a) Geometry for pinholes on an axis parallel to the line connecting the center of the umbra and the chosen location. (b) Range of distances along a line at angle ϕ from point S that contributes to illumination at point S. (c) Maximum angle ϕ max that can contribute to light at point S.

Fig. 6
Fig. 6

Area of pinholes in the atmosphere that illuminate points at distances s = 100 , 1000, and 1900 km from the edge of the umbra. The thickness of the atmosphere is exaggerated.

Fig. 7
Fig. 7

Same as Fig. 6 but for distances s = 2800 km (left) and 3700 km (right).

Fig. 8
Fig. 8

(a) Photograph taken by Surveyor III probably on 24 April 1967 [26]. (b) Sunrise, Earth Limb, SW Pacific Ocean 15.5   S , 158.5   E , 20 September 1992, STS047-54-018 showing that clouds such as cumulus, cumulonimbus, and even the cirrus anvil along the terminator act as opaque barriers. The troposphere appears red, the stratosphere appears blue, and the aureole around the Sun (which is just hidden by the thunderstorm) is a brilliant white [27].

Fig. 9
Fig. 9

Spatial distribution of normalized irradiance in the umbra for molecular atmospheres as a function of sea-level temperature for an isothermal atmosphere (left) and as a function of tropospheric lapse rate (right).

Fig. 10
Fig. 10

Spatial distribution of normalized irradiance in the umbra in an isothermal molecular atmosphere ( T = 273 K ) as a function of the stratospheric ozone content ( 24 km peak height) given in Dobson units (DU).

Fig. 11
Fig. 11

Spatial distribution of normalized irradiance in the umbra as a function of the height of opaque obstacles such as mountain ranges or clouds in a molecular atmosphere.

Fig. 12
Fig. 12

Spatial distribution of normalized irradiance in the umbra as a function of turbidity of an aerosol layer that extends from sea level up with a scale height of 2.5 km .

Fig. 13
Fig. 13

Spatial distribution of normalized irradiance in the umbra for various values of central height H of an aerosol layer 1 km thick with turbidity β = 1.5 . This is compared to an aerosol layer whose concentration decreases exponentially with height from sea level with a scale height of 2.5 km and a molecular atmosphere.

Fig. 14
Fig. 14

Spatial distribution of normalized irradiance in the umbra for a molecular isothermal atmosphere and for an atmosphere with distributions of temperature, ozone, aerosol, and topography described in the text.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

s 1 , 2 ( ϕ ) = r umb + r img ( ( r umb s ) cos ϕ ± r img 2 ( r umb s ) 2 sin 2 ϕ ) .
sin ϕ max = r img r umb s = 1790 4600 s .
z min ( s ) = H 0 · ln ( 7820 s )
M H = r Earth H cos ( ϕ ) + ( r Earth H cos ( ϕ ) ) 2 + 2 r Earth H + 1 .
M H , Δ H = ( H + Δ H 2 ) M H + Δ H 2 ( H Δ H 2 ) M H Δ H 2 Δ H .
I ( λ ) = I 0 ( λ ) · e τ N M .
I min ( λ ) = 400 nm 700 nm 0 4.2 km I 0 ( λ ) · 2 π ( R E + h ) × e K Mol M Mol ( h ) λ 4 d h · d λ .

Metrics