Abstract

A concept for a highly miniaturized spectrometer featuring a two-component design is presented. The first component is a planar chip that integrates an input slit and aberration-correcting diffraction grating with an image sensor and is fabricated using microelectromechanical systems (MEMS) technologies. Due to the fabrication in a simple MEMS batch process the essential elements of the spectrometer are automatically aligned, and a low fabrication cost per device can be achieved. The second component is a spherical mirror, which is the only external part. The optimized grating structure compensates for aberrations within the spectrometer operating range, resulting in a diffraction-limited performance of the spectrometer optics. The prototype of the device has been fabricated and characterized. It takes a volume of 0.5cm3 and provides a FWHM spectral resolution of 0.7nm over a 350nm bandwidth from 420nm to 770nm combined with an etendue of 7.4×105mm2sr.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15, S145-S152 (2005).
    [Crossref]
  2. O. Manzardo, R. Michaely, F. Schädelin, W. Noell, T. Overstolz, N. De Rooij, and H. P. Herzig, “Miniature lamellar grating interferometer based on silicon technology,” Opt. Lett. 29, 1437-1439 (2004).
    [Crossref] [PubMed]
  3. S. Ura, F. Okayama, K. Shiroshita, K. Nishio, T. Sasaki, H. Nishihara, T. Yotsuya, M. Okano, and K. Satoh, “Planar reflection grating lens for compact spectroscopic imaging system,” Appl. Opt. 42, 175-180 (2003).
    [Crossref] [PubMed]
  4. S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, “Planar double-grating microspectrometer,” Opt. Express 15, 3581-3588 (2007).
    [Crossref] [PubMed]
  5. I. Avrutsky, K. Chaganti, I. Salakhutdinov, and G. Auner, “Concept of a miniature optical spectrometer using integrated optical and micro-optical components,” Appl. Opt. 45, 7811-7817 (2006).
    [Crossref] [PubMed]
  6. J. H. Correia, G. de Graaf, S.-H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical micro-interferometer,” Sens. Actuators A, Phys. 82, 191-197 (2000).
    [Crossref]
  7. S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett. 32, 632-634(2007).
    [Crossref] [PubMed]
  8. D. L. Kendall, W. P. Eaton, R. P. Manginell, and T. G. Digges III, “Micromirror arrays using KOH:H2O micromachining of silicon for lens templates, geodesic lenses, and other applications,” Opt. Eng. 33, 3578-3588 (1994).
    [Crossref]
  9. J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, J. Pietarinen, “Si moulds for glass and polymer microlenses replication,” Proc. SPIE 6992, 69920A (2008).
    [Crossref]
  10. S. Grabarnik, A. Emadi, E. Sokolova, G. Vdovin, and R. F. Wolffenbuttel, “Optimal implementation of a microspectrometer based on a single flat diffraction grating,” Appl. Opt. 47, 2082-2090 (2008).
    [Crossref] [PubMed]
  11. W. G. Fastie, “Small plane grating monochromator,” J. Opt. Soc. Am. 42, 641-647 (1952).
    [Crossref]
  12. http://jp.hamamatsu.com/products/sensor-ssd/pd186/4009/C9409MA/index_en.html.
  13. ZEMAX Optical Design Program, User's Guide, Version 9.0 (Focus Software, 2000).
  14. C. Palmer and W. R. McKinney, ”Imaging theory of plane-symmetric varied line-space grating systems,” Opt. Eng. 33, 820-829 (1994).
    [Crossref]
  15. http://www.videologyinc.com.
  16. K. Burns, K. B. Adams, and J. Longwell, “Interference measurements in the spectra of neon and natural mercury,” J. Opt. Soc. Am. 40, 339-344 (1950).
    [Crossref]
  17. http://oceanoptics.com/products/usb2000+.asp.

2008 (2)

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, J. Pietarinen, “Si moulds for glass and polymer microlenses replication,” Proc. SPIE 6992, 69920A (2008).
[Crossref]

S. Grabarnik, A. Emadi, E. Sokolova, G. Vdovin, and R. F. Wolffenbuttel, “Optimal implementation of a microspectrometer based on a single flat diffraction grating,” Appl. Opt. 47, 2082-2090 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (1)

2005 (1)

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15, S145-S152 (2005).
[Crossref]

2004 (1)

2003 (1)

2000 (1)

J. H. Correia, G. de Graaf, S.-H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical micro-interferometer,” Sens. Actuators A, Phys. 82, 191-197 (2000).
[Crossref]

1994 (2)

D. L. Kendall, W. P. Eaton, R. P. Manginell, and T. G. Digges III, “Micromirror arrays using KOH:H2O micromachining of silicon for lens templates, geodesic lenses, and other applications,” Opt. Eng. 33, 3578-3588 (1994).
[Crossref]

C. Palmer and W. R. McKinney, ”Imaging theory of plane-symmetric varied line-space grating systems,” Opt. Eng. 33, 820-829 (1994).
[Crossref]

1952 (1)

1950 (1)

Adams, K. B.

Albero, J.

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, J. Pietarinen, “Si moulds for glass and polymer microlenses replication,” Proc. SPIE 6992, 69920A (2008).
[Crossref]

Auner, G.

Avrutsky, I.

Bartek, M.

J. H. Correia, G. de Graaf, S.-H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical micro-interferometer,” Sens. Actuators A, Phys. 82, 191-197 (2000).
[Crossref]

Burns, K.

Chaganti, K.

Chen, X.

Correia, J. H.

J. H. Correia, G. de Graaf, S.-H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical micro-interferometer,” Sens. Actuators A, Phys. 82, 191-197 (2000).
[Crossref]

de Graaf, G.

J. H. Correia, G. de Graaf, S.-H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical micro-interferometer,” Sens. Actuators A, Phys. 82, 191-197 (2000).
[Crossref]

De Rooij, N.

Digges, T. G.

D. L. Kendall, W. P. Eaton, R. P. Manginell, and T. G. Digges III, “Micromirror arrays using KOH:H2O micromachining of silicon for lens templates, geodesic lenses, and other applications,” Opt. Eng. 33, 3578-3588 (1994).
[Crossref]

Eaton, W. P.

D. L. Kendall, W. P. Eaton, R. P. Manginell, and T. G. Digges III, “Micromirror arrays using KOH:H2O micromachining of silicon for lens templates, geodesic lenses, and other applications,” Opt. Eng. 33, 3578-3588 (1994).
[Crossref]

Emadi, A.

Fastie, W. G.

Gomez, V.

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, J. Pietarinen, “Si moulds for glass and polymer microlenses replication,” Proc. SPIE 6992, 69920A (2008).
[Crossref]

Gorecki, C.

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, J. Pietarinen, “Si moulds for glass and polymer microlenses replication,” Proc. SPIE 6992, 69920A (2008).
[Crossref]

Grabarnik, S.

Herzig, H. P.

Kendall, D. L.

D. L. Kendall, W. P. Eaton, R. P. Manginell, and T. G. Digges III, “Micromirror arrays using KOH:H2O micromachining of silicon for lens templates, geodesic lenses, and other applications,” Opt. Eng. 33, 3578-3588 (1994).
[Crossref]

Kong, S.-H.

J. H. Correia, G. de Graaf, S.-H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical micro-interferometer,” Sens. Actuators A, Phys. 82, 191-197 (2000).
[Crossref]

Li, M.

Loktev, M.

Longwell, J.

Lu, W.

Manginell, R. P.

D. L. Kendall, W. P. Eaton, R. P. Manginell, and T. G. Digges III, “Micromirror arrays using KOH:H2O micromachining of silicon for lens templates, geodesic lenses, and other applications,” Opt. Eng. 33, 3578-3588 (1994).
[Crossref]

Manzardo, O.

McKinney, W. R.

C. Palmer and W. R. McKinney, ”Imaging theory of plane-symmetric varied line-space grating systems,” Opt. Eng. 33, 820-829 (1994).
[Crossref]

Michaely, R.

Nieradko, L.

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, J. Pietarinen, “Si moulds for glass and polymer microlenses replication,” Proc. SPIE 6992, 69920A (2008).
[Crossref]

Nishihara, H.

Nishio, K.

Noell, W.

Okano, M.

Okayama, F.

Ottevaere, H.

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, J. Pietarinen, “Si moulds for glass and polymer microlenses replication,” Proc. SPIE 6992, 69920A (2008).
[Crossref]

Overstolz, T.

Palmer, C.

C. Palmer and W. R. McKinney, ”Imaging theory of plane-symmetric varied line-space grating systems,” Opt. Eng. 33, 820-829 (1994).
[Crossref]

Pietarinen, J.

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, J. Pietarinen, “Si moulds for glass and polymer microlenses replication,” Proc. SPIE 6992, 69920A (2008).
[Crossref]

Salakhutdinov, I.

Sasaki, T.

Satoh, K.

Schädelin, F.

Shiroshita, K.

Sokolova, E.

Ura, S.

Vdovin, G.

Wang, H.

Wang, S.-W.

Wolffenbuttel, R.

Wolffenbuttel, R. F.

S. Grabarnik, A. Emadi, E. Sokolova, G. Vdovin, and R. F. Wolffenbuttel, “Optimal implementation of a microspectrometer based on a single flat diffraction grating,” Appl. Opt. 47, 2082-2090 (2008).
[Crossref] [PubMed]

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15, S145-S152 (2005).
[Crossref]

J. H. Correia, G. de Graaf, S.-H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical micro-interferometer,” Sens. Actuators A, Phys. 82, 191-197 (2000).
[Crossref]

Xia, C.

Yotsuya, T.

Zhang, T.

Zheng, W.

Appl. Opt. (3)

J. Micromech. Microeng. (1)

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15, S145-S152 (2005).
[Crossref]

J. Opt. Soc. Am. (2)

Opt. Eng. (2)

C. Palmer and W. R. McKinney, ”Imaging theory of plane-symmetric varied line-space grating systems,” Opt. Eng. 33, 820-829 (1994).
[Crossref]

D. L. Kendall, W. P. Eaton, R. P. Manginell, and T. G. Digges III, “Micromirror arrays using KOH:H2O micromachining of silicon for lens templates, geodesic lenses, and other applications,” Opt. Eng. 33, 3578-3588 (1994).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, J. Pietarinen, “Si moulds for glass and polymer microlenses replication,” Proc. SPIE 6992, 69920A (2008).
[Crossref]

Sens. Actuators A, Phys. (1)

J. H. Correia, G. de Graaf, S.-H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical micro-interferometer,” Sens. Actuators A, Phys. 82, 191-197 (2000).
[Crossref]

Other (4)

http://www.videologyinc.com.

http://oceanoptics.com/products/usb2000+.asp.

http://jp.hamamatsu.com/products/sensor-ssd/pd186/4009/C9409MA/index_en.html.

ZEMAX Optical Design Program, User's Guide, Version 9.0 (Focus Software, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Design of the microspectrometer prototype. A piece of glass wafer integrating a diffraction grating and a transmission slit is mounted on top of the CCD sensor coverglass. An optical fiber is used to illuminate the entrance slit, and the dispersed spectrum is projected onto a CCD chip. Plane o y z of the coordinate system o x y z lies in the grating plane, and the oy axis coincides with the direction of the dispersion.

Fig. 2
Fig. 2

Scanning electron microscope photograph of a 6 μm transmission entrance slit etched in the aluminum diffraction grating.

Fig. 3
Fig. 3

Glass chip glued onto the CCD sensor coverglass. The optical fiber visible in the top left corner of the photo is used to illuminate the transparent entrance slit etched in the diffraction grating.

Fig. 4
Fig. 4

Spectral pattern captured with the CCD camera and graphical representation of the Ne spectrum in the 350 nm operating bandwidth of the spectrometer (a) and magnified part of the Ne spectrum (b). Some of the spectral lines are marked with the corresponding measured peak wavelength values, while the numbers in brackets are reference values.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F = p d cos ( β ) δ λ .
F 4.75 × 10 3 × 1.6 × 10 3 × 1 5 × 10 10 = 15 mm .

Metrics