Abstract

The spatially resolved wavefront aberrations of four types of ophthalmic lens are measured with a custom-built apparatus based on a Hartmann–Shack wavefront sensor and specially designed positioning stage. The wavefront aberrations of the progressive addition lenses (PALs) are compared. The results show that the distribution depends much on the design philosophy, although the average values of root mean square in the entire measurement areas have no significant difference. It is feasible to evaluate the optical performance through the wavefront analysis of PALs, but how to meet the customized visual needs of patients and how to minimize the unwanted aberrations in some special zones are important points that should be taken into account.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Atchison, “Spectacle design: a review,” Appl. Opt. 31, 3579-3585 (1992).
    [CrossRef] [PubMed]
  2. D. A. Atchison and S. A. Tame, “Performance of aspheric spectacle lenses,” Clin. Exp. Optometry 75, 210-217 (1992).
    [CrossRef]
  3. C. Fowler, “Recent trends in progressive power lenses,” Ophthal. Physiol. Opt. 18, 234-237 (1998).
    [CrossRef]
  4. E. Keren, Y. Zac, F. Nabeth, K. Kreske, and A. Livnat, “Quantitative criteria for determining the quality of ophthalmic lenses,” Proc. SPIE 1752, 264-273 (1992).
    [CrossRef]
  5. D. A. Atchison, “Optical performance of progressive power lenses,” Clin. Exp. Optometry 70, 149-155 (1987).
    [CrossRef]
  6. E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optometry Vis. Sci. 80, 106-114(2003).
    [CrossRef]
  7. A. W. Dreher, J. Jethmalani, L. Warden, and L. Sverdrup, “Wavefront-guided spectacle lenses, ” Proc. SPIE 6426, 64260Q1-10 (2007).
  8. E. A. Villegas and P. Artal, “Comparison of aberrations in different types of progressive power lenses,” Ophthal. Physiol. Opt. 24, 419-426 (2004).
    [CrossRef]
  9. J. E. Sheedy, “Correlation analysis of the optics of progressive addition lenses,” Optometry Vis. Sci. 81, 350-361 (2004).
    [CrossRef]
  10. J. E. Sheedy, “Progressive addition lenses--matching the specific lens to patient needs,” Optometry Vis. Sci. 75, 83-102(2004).
  11. J. E. Sheedy, R. F. Hardy and J. R. Hayes, “Progressive addition lenses--measurements and ratings,” Optometry Vis. Sci. 77, 23-39 (2006).
  12. G. Minkwitz, “On the surface astigmatism of a fixed symmetrical aspheric surface,” Opt. Acta 10, 223-227 (1963).
    [CrossRef]
  13. J. E. Sheedy, M. Buri, I. L. Bailey, J. Azus, and I. M. Borish, “Optics of progressive lenses,” Am. J. Optometry Physiol. Opt. 64, 90-99 (1987).
  14. D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, 1992).
  15. M. Rottenkolber and H. Podbielska, “High precision Twyman-Green interferometer for the measurement of ophthalmic surfaces,” Acta Ophthalmol. Scand. 74, 348-353 (1996).
    [CrossRef] [PubMed]
  16. C. Gonzalez, E. R. Villegas, L. Carretero, and A. Fimia, “Ronchi test for testing the powers of bifocal intraocular lenses,” Ophthal. Physiol. Opt. 17, 161-163 (1997).
  17. M. Rottenkolber and H. Podbielska, “Measuring ophthalmologic surfaces by means of moiré deflectometry,” Opt. Eng. 35, 1124-1133 (1996).
    [CrossRef]
  18. C. Castellini, F. Francini, and B. Tiribilli, “Hartmann test modification for measuring ophthalmic progressive lenses,” Appl. Opt. 33, 4120-4124 (1994).
    [CrossRef] [PubMed]
  19. C. W. Fowler, “Technical note: apparatus for comparison of progressive addition spectacle lenses,” Ophthal. Physiol. Opt. 26, 502-506 (2006).
    [CrossRef]
  20. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4, 329-351 (2004).
    [CrossRef] [PubMed]
  21. J. Liang, B. Grimm, G. Stefan, and J. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949-1957 (1994).
    [CrossRef]
  22. H. C. Howland and B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508-1518 (1977).
    [CrossRef] [PubMed]
  23. J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, “Measurement of the wavefront aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449-2456 (1998).
    [CrossRef]
  24. I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Visual Sci. 44, 5438-5446 (2003).
    [CrossRef]
  25. J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optometry Vis. Sci. 82, 916-924 (2005).
    [CrossRef]
  26. J. Schwiegerling, “Scaling Zernike expansion coefficients to different pupil sizes,” J. Opt. Soc. Am. A 19, 1937-1945 (2002).
    [CrossRef]
  27. C. E. Campbell, “Matrix method to find a new set of Zernike coefficients from an original set when the aperture radius is changed,” J. Opt. Soc. Am. A 20, 209-217 (2003).
    [CrossRef]
  28. C. Y. Tang and W. N. Charman, “Effects of monochromatic and chromatic oblique aberrations on visual performance during spectacle lens wear,” Ophthal. Physiol. Opt. 12, 340-349(1992).
    [CrossRef]
  29. S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309-4323 (1999).
    [CrossRef]
  30. J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye's defense against chromatic blur,” Nature 417, 174-176 (2002).
    [CrossRef] [PubMed]

2007 (1)

A. W. Dreher, J. Jethmalani, L. Warden, and L. Sverdrup, “Wavefront-guided spectacle lenses, ” Proc. SPIE 6426, 64260Q1-10 (2007).

2006 (2)

J. E. Sheedy, R. F. Hardy and J. R. Hayes, “Progressive addition lenses--measurements and ratings,” Optometry Vis. Sci. 77, 23-39 (2006).

C. W. Fowler, “Technical note: apparatus for comparison of progressive addition spectacle lenses,” Ophthal. Physiol. Opt. 26, 502-506 (2006).
[CrossRef]

2005 (1)

J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optometry Vis. Sci. 82, 916-924 (2005).
[CrossRef]

2004 (4)

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4, 329-351 (2004).
[CrossRef] [PubMed]

E. A. Villegas and P. Artal, “Comparison of aberrations in different types of progressive power lenses,” Ophthal. Physiol. Opt. 24, 419-426 (2004).
[CrossRef]

J. E. Sheedy, “Correlation analysis of the optics of progressive addition lenses,” Optometry Vis. Sci. 81, 350-361 (2004).
[CrossRef]

J. E. Sheedy, “Progressive addition lenses--matching the specific lens to patient needs,” Optometry Vis. Sci. 75, 83-102(2004).

2003 (3)

E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optometry Vis. Sci. 80, 106-114(2003).
[CrossRef]

C. E. Campbell, “Matrix method to find a new set of Zernike coefficients from an original set when the aperture radius is changed,” J. Opt. Soc. Am. A 20, 209-217 (2003).
[CrossRef]

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Visual Sci. 44, 5438-5446 (2003).
[CrossRef]

2002 (2)

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye's defense against chromatic blur,” Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

J. Schwiegerling, “Scaling Zernike expansion coefficients to different pupil sizes,” J. Opt. Soc. Am. A 19, 1937-1945 (2002).
[CrossRef]

1999 (1)

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309-4323 (1999).
[CrossRef]

1998 (2)

1997 (1)

C. Gonzalez, E. R. Villegas, L. Carretero, and A. Fimia, “Ronchi test for testing the powers of bifocal intraocular lenses,” Ophthal. Physiol. Opt. 17, 161-163 (1997).

1996 (2)

M. Rottenkolber and H. Podbielska, “Measuring ophthalmologic surfaces by means of moiré deflectometry,” Opt. Eng. 35, 1124-1133 (1996).
[CrossRef]

M. Rottenkolber and H. Podbielska, “High precision Twyman-Green interferometer for the measurement of ophthalmic surfaces,” Acta Ophthalmol. Scand. 74, 348-353 (1996).
[CrossRef] [PubMed]

1994 (2)

1992 (4)

E. Keren, Y. Zac, F. Nabeth, K. Kreske, and A. Livnat, “Quantitative criteria for determining the quality of ophthalmic lenses,” Proc. SPIE 1752, 264-273 (1992).
[CrossRef]

D. A. Atchison, “Spectacle design: a review,” Appl. Opt. 31, 3579-3585 (1992).
[CrossRef] [PubMed]

D. A. Atchison and S. A. Tame, “Performance of aspheric spectacle lenses,” Clin. Exp. Optometry 75, 210-217 (1992).
[CrossRef]

C. Y. Tang and W. N. Charman, “Effects of monochromatic and chromatic oblique aberrations on visual performance during spectacle lens wear,” Ophthal. Physiol. Opt. 12, 340-349(1992).
[CrossRef]

1987 (2)

D. A. Atchison, “Optical performance of progressive power lenses,” Clin. Exp. Optometry 70, 149-155 (1987).
[CrossRef]

J. E. Sheedy, M. Buri, I. L. Bailey, J. Azus, and I. M. Borish, “Optics of progressive lenses,” Am. J. Optometry Physiol. Opt. 64, 90-99 (1987).

1977 (1)

1963 (1)

G. Minkwitz, “On the surface astigmatism of a fixed symmetrical aspheric surface,” Opt. Acta 10, 223-227 (1963).
[CrossRef]

Applegate, R. A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4, 329-351 (2004).
[CrossRef] [PubMed]

Artal, P.

E. A. Villegas and P. Artal, “Comparison of aberrations in different types of progressive power lenses,” Ophthal. Physiol. Opt. 24, 419-426 (2004).
[CrossRef]

E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optometry Vis. Sci. 80, 106-114(2003).
[CrossRef]

Atchison, D. A.

D. A. Atchison, “Spectacle design: a review,” Appl. Opt. 31, 3579-3585 (1992).
[CrossRef] [PubMed]

D. A. Atchison and S. A. Tame, “Performance of aspheric spectacle lenses,” Clin. Exp. Optometry 75, 210-217 (1992).
[CrossRef]

D. A. Atchison, “Optical performance of progressive power lenses,” Clin. Exp. Optometry 70, 149-155 (1987).
[CrossRef]

Azus, J.

J. E. Sheedy, M. Buri, I. L. Bailey, J. Azus, and I. M. Borish, “Optics of progressive lenses,” Am. J. Optometry Physiol. Opt. 64, 90-99 (1987).

Bailey, I. L.

J. E. Sheedy, M. Buri, I. L. Bailey, J. Azus, and I. M. Borish, “Optics of progressive lenses,” Am. J. Optometry Physiol. Opt. 64, 90-99 (1987).

Bille, J.

Borish, I. M.

J. E. Sheedy, M. Buri, I. L. Bailey, J. Azus, and I. M. Borish, “Optics of progressive lenses,” Am. J. Optometry Physiol. Opt. 64, 90-99 (1987).

Bradley, A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4, 329-351 (2004).
[CrossRef] [PubMed]

Brunette, I.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Visual Sci. 44, 5438-5446 (2003).
[CrossRef]

Bueno, J. M.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Visual Sci. 44, 5438-5446 (2003).
[CrossRef]

Buri, M.

J. E. Sheedy, M. Buri, I. L. Bailey, J. Azus, and I. M. Borish, “Optics of progressive lenses,” Am. J. Optometry Physiol. Opt. 64, 90-99 (1987).

Burns, S. A.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye's defense against chromatic blur,” Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309-4323 (1999).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, “Measurement of the wavefront aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449-2456 (1998).
[CrossRef]

Campbell, C.

J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optometry Vis. Sci. 82, 916-924 (2005).
[CrossRef]

Campbell, C. E.

Carretero, L.

C. Gonzalez, E. R. Villegas, L. Carretero, and A. Fimia, “Ronchi test for testing the powers of bifocal intraocular lenses,” Ophthal. Physiol. Opt. 17, 161-163 (1997).

Castellini, C.

Charman, W. N.

C. Y. Tang and W. N. Charman, “Effects of monochromatic and chromatic oblique aberrations on visual performance during spectacle lens wear,” Ophthal. Physiol. Opt. 12, 340-349(1992).
[CrossRef]

Dreher, A. W.

A. W. Dreher, J. Jethmalani, L. Warden, and L. Sverdrup, “Wavefront-guided spectacle lenses, ” Proc. SPIE 6426, 64260Q1-10 (2007).

Fimia, A.

C. Gonzalez, E. R. Villegas, L. Carretero, and A. Fimia, “Ronchi test for testing the powers of bifocal intraocular lenses,” Ophthal. Physiol. Opt. 17, 161-163 (1997).

Fowler, C.

C. Fowler, “Recent trends in progressive power lenses,” Ophthal. Physiol. Opt. 18, 234-237 (1998).
[CrossRef]

Fowler, C. W.

C. W. Fowler, “Technical note: apparatus for comparison of progressive addition spectacle lenses,” Ophthal. Physiol. Opt. 26, 502-506 (2006).
[CrossRef]

Francini, F.

Gonzalez, C.

C. Gonzalez, E. R. Villegas, L. Carretero, and A. Fimia, “Ronchi test for testing the powers of bifocal intraocular lenses,” Ophthal. Physiol. Opt. 17, 161-163 (1997).

Grimm, B.

Hamam, H.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Visual Sci. 44, 5438-5446 (2003).
[CrossRef]

Hardy, R. F.

J. E. Sheedy, R. F. Hardy and J. R. Hayes, “Progressive addition lenses--measurements and ratings,” Optometry Vis. Sci. 77, 23-39 (2006).

Hayes, J. R.

J. E. Sheedy, R. F. Hardy and J. R. Hayes, “Progressive addition lenses--measurements and ratings,” Optometry Vis. Sci. 77, 23-39 (2006).

J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optometry Vis. Sci. 82, 916-924 (2005).
[CrossRef]

He, J. C.

Hong, X.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4, 329-351 (2004).
[CrossRef] [PubMed]

Howland, B.

Howland, H. C.

Jethmalani, J.

A. W. Dreher, J. Jethmalani, L. Warden, and L. Sverdrup, “Wavefront-guided spectacle lenses, ” Proc. SPIE 6426, 64260Q1-10 (2007).

Keren, E.

E. Keren, Y. Zac, F. Nabeth, K. Kreske, and A. Livnat, “Quantitative criteria for determining the quality of ophthalmic lenses,” Proc. SPIE 1752, 264-273 (1992).
[CrossRef]

King-Smith, E.

J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optometry Vis. Sci. 82, 916-924 (2005).
[CrossRef]

Kreske, K.

E. Keren, Y. Zac, F. Nabeth, K. Kreske, and A. Livnat, “Quantitative criteria for determining the quality of ophthalmic lenses,” Proc. SPIE 1752, 264-273 (1992).
[CrossRef]

Liang, J.

Livnat, A.

E. Keren, Y. Zac, F. Nabeth, K. Kreske, and A. Livnat, “Quantitative criteria for determining the quality of ophthalmic lenses,” Proc. SPIE 1752, 264-273 (1992).
[CrossRef]

Malacara, D.

D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, 1992).

Marcos, S.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye's defense against chromatic blur,” Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309-4323 (1999).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, “Measurement of the wavefront aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449-2456 (1998).
[CrossRef]

McLellan, J. S.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye's defense against chromatic blur,” Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

Minkwitz, G.

G. Minkwitz, “On the surface astigmatism of a fixed symmetrical aspheric surface,” Opt. Acta 10, 223-227 (1963).
[CrossRef]

Moreno-Barriuso, E.

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309-4323 (1999).
[CrossRef]

Nabeth, F.

E. Keren, Y. Zac, F. Nabeth, K. Kreske, and A. Livnat, “Quantitative criteria for determining the quality of ophthalmic lenses,” Proc. SPIE 1752, 264-273 (1992).
[CrossRef]

Navarro, R.

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309-4323 (1999).
[CrossRef]

Parent, M.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Visual Sci. 44, 5438-5446 (2003).
[CrossRef]

Podbielska, H.

M. Rottenkolber and H. Podbielska, “High precision Twyman-Green interferometer for the measurement of ophthalmic surfaces,” Acta Ophthalmol. Scand. 74, 348-353 (1996).
[CrossRef] [PubMed]

M. Rottenkolber and H. Podbielska, “Measuring ophthalmologic surfaces by means of moiré deflectometry,” Opt. Eng. 35, 1124-1133 (1996).
[CrossRef]

Prieto, P. M.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye's defense against chromatic blur,” Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

Rottenkolber, M.

M. Rottenkolber and H. Podbielska, “High precision Twyman-Green interferometer for the measurement of ophthalmic surfaces,” Acta Ophthalmol. Scand. 74, 348-353 (1996).
[CrossRef] [PubMed]

M. Rottenkolber and H. Podbielska, “Measuring ophthalmologic surfaces by means of moiré deflectometry,” Opt. Eng. 35, 1124-1133 (1996).
[CrossRef]

Schwiegerling, J.

Sheedy, J. E.

J. E. Sheedy, R. F. Hardy and J. R. Hayes, “Progressive addition lenses--measurements and ratings,” Optometry Vis. Sci. 77, 23-39 (2006).

J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optometry Vis. Sci. 82, 916-924 (2005).
[CrossRef]

J. E. Sheedy, “Correlation analysis of the optics of progressive addition lenses,” Optometry Vis. Sci. 81, 350-361 (2004).
[CrossRef]

J. E. Sheedy, “Progressive addition lenses--matching the specific lens to patient needs,” Optometry Vis. Sci. 75, 83-102(2004).

J. E. Sheedy, M. Buri, I. L. Bailey, J. Azus, and I. M. Borish, “Optics of progressive lenses,” Am. J. Optometry Physiol. Opt. 64, 90-99 (1987).

Simonet, P.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Visual Sci. 44, 5438-5446 (2003).
[CrossRef]

Stefan, G.

Sverdrup, L.

A. W. Dreher, J. Jethmalani, L. Warden, and L. Sverdrup, “Wavefront-guided spectacle lenses, ” Proc. SPIE 6426, 64260Q1-10 (2007).

Tame, S. A.

D. A. Atchison and S. A. Tame, “Performance of aspheric spectacle lenses,” Clin. Exp. Optometry 75, 210-217 (1992).
[CrossRef]

Tang, C. Y.

C. Y. Tang and W. N. Charman, “Effects of monochromatic and chromatic oblique aberrations on visual performance during spectacle lens wear,” Ophthal. Physiol. Opt. 12, 340-349(1992).
[CrossRef]

Thibos, L. N.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4, 329-351 (2004).
[CrossRef] [PubMed]

Tiribilli, B.

Villegas, E. A.

E. A. Villegas and P. Artal, “Comparison of aberrations in different types of progressive power lenses,” Ophthal. Physiol. Opt. 24, 419-426 (2004).
[CrossRef]

E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optometry Vis. Sci. 80, 106-114(2003).
[CrossRef]

Villegas, E. R.

C. Gonzalez, E. R. Villegas, L. Carretero, and A. Fimia, “Ronchi test for testing the powers of bifocal intraocular lenses,” Ophthal. Physiol. Opt. 17, 161-163 (1997).

Warden, L.

A. W. Dreher, J. Jethmalani, L. Warden, and L. Sverdrup, “Wavefront-guided spectacle lenses, ” Proc. SPIE 6426, 64260Q1-10 (2007).

Webb, R. H.

Zac, Y.

E. Keren, Y. Zac, F. Nabeth, K. Kreske, and A. Livnat, “Quantitative criteria for determining the quality of ophthalmic lenses,” Proc. SPIE 1752, 264-273 (1992).
[CrossRef]

Acta Ophthalmol. Scand. (1)

M. Rottenkolber and H. Podbielska, “High precision Twyman-Green interferometer for the measurement of ophthalmic surfaces,” Acta Ophthalmol. Scand. 74, 348-353 (1996).
[CrossRef] [PubMed]

Am. J. Optometry Physiol. Opt. (1)

J. E. Sheedy, M. Buri, I. L. Bailey, J. Azus, and I. M. Borish, “Optics of progressive lenses,” Am. J. Optometry Physiol. Opt. 64, 90-99 (1987).

Appl. Opt. (2)

Clin. Exp. Optometry (2)

D. A. Atchison and S. A. Tame, “Performance of aspheric spectacle lenses,” Clin. Exp. Optometry 75, 210-217 (1992).
[CrossRef]

D. A. Atchison, “Optical performance of progressive power lenses,” Clin. Exp. Optometry 70, 149-155 (1987).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (1)

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Visual Sci. 44, 5438-5446 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

J. Vis. (1)

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4, 329-351 (2004).
[CrossRef] [PubMed]

Nature (1)

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye's defense against chromatic blur,” Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

Ophthal. Physiol. Opt. (5)

C. Y. Tang and W. N. Charman, “Effects of monochromatic and chromatic oblique aberrations on visual performance during spectacle lens wear,” Ophthal. Physiol. Opt. 12, 340-349(1992).
[CrossRef]

C. W. Fowler, “Technical note: apparatus for comparison of progressive addition spectacle lenses,” Ophthal. Physiol. Opt. 26, 502-506 (2006).
[CrossRef]

C. Gonzalez, E. R. Villegas, L. Carretero, and A. Fimia, “Ronchi test for testing the powers of bifocal intraocular lenses,” Ophthal. Physiol. Opt. 17, 161-163 (1997).

C. Fowler, “Recent trends in progressive power lenses,” Ophthal. Physiol. Opt. 18, 234-237 (1998).
[CrossRef]

E. A. Villegas and P. Artal, “Comparison of aberrations in different types of progressive power lenses,” Ophthal. Physiol. Opt. 24, 419-426 (2004).
[CrossRef]

Opt. Acta (1)

G. Minkwitz, “On the surface astigmatism of a fixed symmetrical aspheric surface,” Opt. Acta 10, 223-227 (1963).
[CrossRef]

Opt. Eng. (1)

M. Rottenkolber and H. Podbielska, “Measuring ophthalmologic surfaces by means of moiré deflectometry,” Opt. Eng. 35, 1124-1133 (1996).
[CrossRef]

Optometry Vis. Sci. (5)

E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optometry Vis. Sci. 80, 106-114(2003).
[CrossRef]

J. E. Sheedy, “Correlation analysis of the optics of progressive addition lenses,” Optometry Vis. Sci. 81, 350-361 (2004).
[CrossRef]

J. E. Sheedy, “Progressive addition lenses--matching the specific lens to patient needs,” Optometry Vis. Sci. 75, 83-102(2004).

J. E. Sheedy, R. F. Hardy and J. R. Hayes, “Progressive addition lenses--measurements and ratings,” Optometry Vis. Sci. 77, 23-39 (2006).

J. E. Sheedy, C. Campbell, E. King-Smith, and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optometry Vis. Sci. 82, 916-924 (2005).
[CrossRef]

Proc. SPIE (2)

E. Keren, Y. Zac, F. Nabeth, K. Kreske, and A. Livnat, “Quantitative criteria for determining the quality of ophthalmic lenses,” Proc. SPIE 1752, 264-273 (1992).
[CrossRef]

A. W. Dreher, J. Jethmalani, L. Warden, and L. Sverdrup, “Wavefront-guided spectacle lenses, ” Proc. SPIE 6426, 64260Q1-10 (2007).

Vision Res. (1)

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309-4323 (1999).
[CrossRef]

Other (1)

D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the far point sphere and the vertex sphere. The light beam incidents obliquely as the eye fixates the target through the midperipheral portion of the ophthalmic lens.

Fig. 2
Fig. 2

Schematics of the experimental setup. LD, laser diode; NDF, neutral density filter; SF, spatial filter, consisting of a 40 × microscope objective and a 50 μm pinhole; C, collimator achromatic lens; P, size-adjustable aperture; M1 and M2, planar mirrors; L1, L2, L3, and L4, achromatic lenses; HSS, Hartmann–Shack sensor.

Fig. 3
Fig. 3

Distribution of the measurement zones on the back surface of the tested ophthalmic lens. The zone diameter and space distance were 5 and 7 mm , respectively. The geometrical center was taken as the original point of the coordinates for a single-vision lens, but the center of the fitting cross was taken as the origin point of the coordinates for the progressive addition lens. The bold dashed–dotted circle, the bold circles, and the cross marked on the map represent the distance reference circle, near reference circle, and the fitting cross, respectively. These marks have the same interpretation in other figures.

Fig. 4
Fig. 4

Results for the measured single vision lens of nominal power 5.00 D . The original point of the coordinates ( x = 0 , y = 0 ) corresponds with the geometrical center of the lens and contour plots show values relative to the values at this origin. The contour maps shown are for (a) spherical power (D), (b) astigmatism (D), and (c) the RMS (micrometers) of HOAs. x and y (degree) are the angles of eye turn corresponding to the X Y coordinates (millimeters), respectively.

Fig. 5
Fig. 5

Contour plots of the spherical additions and the unwanted astigmatisms for three PALs with different design philosophy. (a), (d) PAL1, (b), (e) PAL2, (c), (f) PAL3. x and y are the angle of eye turn corresponding to the X Y coordinates, respectively. The origin of the coordinates coincides with the center of the fitting cross of the tested PALs.

Fig. 6
Fig. 6

(a) Curve fitting of the spherical power and (b) the corresponding power rate for the three tested PALs. The power rate is calculated along the vertex axis (a line from the center of the fitting cross to the center of the near reference circle). The origin of the abscissa (vertex axis) coincides with the center of the fitting cross of the tested PALs.

Fig. 7
Fig. 7

Contour plots of the RMS value of HOAs. (a) PAL1, (b) PAL2, (c) PAL3. The origin of the coordinates coincides with the center of fitting cross of the tested PALs.

Fig. 8
Fig. 8

Distribution of mean values of RMS for the individual Zernike aberrations and the RMS for second- to fourth-order aberrations (the defocus is excluded) averaged in the distance-viewing area of the PALs.

Fig. 9
Fig. 9

Distribution of mean values of RMS for the individual Zernike aberrations and the RMS for second- to fourth-order aberrations (the defocus is excluded) averaged in the corridor area of the PALs.

Fig. 10
Fig. 10

Distribution of mean values of RMS for the individual Zernike aberrations and the RMS for second- to fourth-order aberrations (the defocus is excluded) averaged in the near-viewing area of the PALs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ x = tan 1 ( x / 27 ) ,
θ y = tan 1 ( x / 27 ) .
D = 4 3 r 2 RMS h ,

Metrics