Abstract

A method to analyze the change in the polarization state of a terahertz (THz) wave by using a typical electro-optic sampling setup with a 110 zinc-blende crystal as a sensor is presented. To illustrate knowledge of the polarization of the THz pulse, the THz detection function in a ZnTe crystal is presented. Two kinds of Jones matrix for the birefringence device and the polarizer device are used to analyze the polarization change in the THz electric field caused by the sample. It is found that THz polarization imaging is sensitive to the edge of the sample.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716-1718(1995).
    [CrossRef] [PubMed]
  2. Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of terahertz beams,” Appl. Phys. Lett. 69, 1026-1028 (1996).
    [CrossRef]
  3. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” Opt. Lett. 22, 904-906 (1997).
    [CrossRef] [PubMed]
  4. Z. Jiang and X.-C. Zhang, “Single-shot spatiotemporal terahertz field imaging,” Opt. Lett. 23, 1114-1116 (1998).
    [CrossRef]
  5. S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22-26 (1998).
    [CrossRef]
  6. J. Pearce, Z. Jian, and D. M. Mittleman, “Spectral shifts as a signature of the onset of diffusion of broadband terahertz pulses,” Opt. Lett. 29, 2926-2928 (2004).
    [CrossRef]
  7. N. C. J. van der Valk, W. A. M. van der Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett. 30, 2802-2804 (2005).
    [CrossRef] [PubMed]
  8. P. C. M. Planken, H.-K. Nienhuys, and H. J. Bakker, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18, 313-317(2001).
    [CrossRef]
  9. J. J. Gil and E. Bernabéu, “Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar decomposition of its Mueller matrix,” Optik (Jena) 76, 67-71 (1987).

2005 (1)

2004 (1)

2001 (1)

1998 (2)

Z. Jiang and X.-C. Zhang, “Single-shot spatiotemporal terahertz field imaging,” Opt. Lett. 23, 1114-1116 (1998).
[CrossRef]

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22-26 (1998).
[CrossRef]

1997 (1)

1996 (1)

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of terahertz beams,” Appl. Phys. Lett. 69, 1026-1028 (1996).
[CrossRef]

1995 (1)

1987 (1)

J. J. Gil and E. Bernabéu, “Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar decomposition of its Mueller matrix,” Optik (Jena) 76, 67-71 (1987).

Bakker, H. J.

Bernabéu, E.

J. J. Gil and E. Bernabéu, “Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar decomposition of its Mueller matrix,” Optik (Jena) 76, 67-71 (1987).

Boivin, L.

Brener, I.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22-26 (1998).
[CrossRef]

Gil, J. J.

J. J. Gil and E. Bernabéu, “Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar decomposition of its Mueller matrix,” Optik (Jena) 76, 67-71 (1987).

Hewitt, T. D.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of terahertz beams,” Appl. Phys. Lett. 69, 1026-1028 (1996).
[CrossRef]

Hu, B. B.

Hunsche, S.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22-26 (1998).
[CrossRef]

D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” Opt. Lett. 22, 904-906 (1997).
[CrossRef] [PubMed]

Jian, Z.

Jiang, Z.

Koch, M.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22-26 (1998).
[CrossRef]

Mittleman, D. M.

Nienhuys, H.-K.

Nuss, M. C.

Pearce, J.

Planken, P. C. M.

van der Marel, W. A. M.

van der Valk, N. C. J.

Wu, Q.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of terahertz beams,” Appl. Phys. Lett. 69, 1026-1028 (1996).
[CrossRef]

Zhang, X.-C.

Z. Jiang and X.-C. Zhang, “Single-shot spatiotemporal terahertz field imaging,” Opt. Lett. 23, 1114-1116 (1998).
[CrossRef]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of terahertz beams,” Appl. Phys. Lett. 69, 1026-1028 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the imaging setup. HWP, half-wave plate; PBS, polarizing beam splitter. L1–L3, lenses; PM1–PM4, parabolic mirrors; QWP, quarter-wave plate.

Fig. 2
Fig. 2

Angles of the THz and probe-beam polarization directions with respect to the crystal (001) axis.

Fig. 3
Fig. 3

Dependence of the THz electric fields on the crystal’s azimuthal angle α.

Fig. 4
Fig. 4

Images of the sample. (a) Visible light photo of the sample; only the portion in the rectangle is scanned. (b), (c) Maximum value of the perpendicular and horizontal components of the THz electric field in the time domain. (d) Angular rotation of the THz electric field.

Fig. 5
Fig. 5

Images of the sample. (a), (b) Value of the perpendicular and horizontal components of the 0.2 THz electric field. (c) Angular rotation of the THz electric field at 0.2 THz . (d) Relative phase delay between two perpendicular components of the 0.2 THz field.

Fig. 6
Fig. 6

Images of the samples. Changes of (a) θ and (b) β caused by the sample.

Fig. 7
Fig. 7

Changes of θ p caused by the sample.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ I ( α , φ ) = I p ω n 3 E THz γ 41 L 2 c ( cos α sin 2 φ + 2 sin α cos 2 φ ) ,
Δ I 1 ( α ) = I p ω n 3 E THz γ 41 L 2 c 2 sin α .
Δ I 2 ( α ) = I p ω n 3 E THz γ 41 L 2 c 2 cos α .
[ E u i E v i ] , [ E u o E v o ]
[ E u o E v o ] = [ e j ( β / 2 ) 0 0 e j ( β / 2 ) ] [ E u i E v i ] ,
[ E x o E y o ] = [ cos θ sin θ sin θ cos θ ] [ e j ( β / 2 ) 0 0 e j ( β / 2 ) ] [ cos θ sin θ sin θ cos θ ] [ E x i E y i ] = J ( β , θ ) [ E x i E y i ] .
J ( β , θ ) = [ cos β 2 + j sin β 2 cos 2 θ j sin β 2 sin 2 θ j sin β 2 sin 2 θ cos β 2 j sin β 2 cos 2 θ ] .
[ E u i E v i ] , [ E u o E v o ] ;
J ( θ p ) = [ cos 2 θ p sin θ p cos θ p sin θ p cos θ p sin 2 θ p ] ,

Metrics