Abstract

We present a technique for improving the pulse-delay performance of a stimulated Brillouin scattering (SBS) based broadband slow-light system by combining it with fiber Bragg gratings (FBG). We optimize the physical device parameters of three systems: (1) broadband SBS, (2) broadband SBS+a single FBG, and (3) broadband SBS+a double FBG for maximizing the delay performance. The optimization is performed under distortion and system resource constraints for a range of bit rates from 0.5 to 8.5Gbps. We find that an optimized broadband SBS+a double FBG system improves the fractional delay 1.8 times that of the broadband SBS system at an optimum bit rate of 3Gbps. Also, pump power consumption is reduced by 15% as compared to the broadband SBS system at the same bit rate.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd and D. J. Gauthier, “Slow and fast light,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2002), Vol. 43, Chap. 6, pp. 497-530.
    [CrossRef]
  2. D. Gauthier, “Slow light brings faster communication,” Phys. World 18, 30-32 (December 2005).
  3. R. W. Boyd, D. Gauthier, and A. L. Gaeta, “Slow light: from basics to future prospects,” Photonics Spectra , 44-50 (March 2006).
  4. Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986-1988 (2007).
    [CrossRef] [PubMed]
  5. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995-10002 (2005).
    [CrossRef] [PubMed]
  6. R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, and D. J. Gauthier, “Maximizing. the opening of eye diagrams for slow-light systems,” Appl. Opt. 46, 6513-6519 (2007).
    [CrossRef] [PubMed]
  7. A. Zadok, A. Eyal, and M. Tur, “Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp,” Opt. Express 14, 8498-8505(2006).
    [CrossRef] [PubMed]
  8. T. Schneider, R. Henker, K. Lauterbach, and M. Junker, “Comparison of delay enhancement mechanisms for SBS-based slow light systems,” Opt. Express 15, 9606-9613 (2007).
    [CrossRef] [PubMed]
  9. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” IEEE J. Lightwave Technol. 25, 201-206 (2007).
    [CrossRef]
  10. K. Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32, 217-219 (2007).
    [CrossRef] [PubMed]
  11. M. G. Herraez, K. Y. Song, and L. Thevenaz, “ Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395-1400 (2006).
    [CrossRef]
  12. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16, 2764-2777 (2008).
    [CrossRef] [PubMed]
  13. L. Yi, Y. Jaou, W. Hu, T. Su, and S. Bigo, “Improved slow-light performance of 10 Gb/s NRZ, PSBT, and DPSK signals in fiber broadband SBS,” Opt. Express 15, 16972-16979 (2007).
    [CrossRef] [PubMed]
  14. C. Jauregui, P. Petropoulos, and D. J. Richardson, “Brillouin assisted slow-light enhancement via Fabry-Perot cavity effects,” Opt. Express 15, 5126-5135 (2007).
    [CrossRef] [PubMed]
  15. J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726-730(2004).
    [CrossRef]
  16. M. Lee, R. Pant, M. D. Stenner, and M. A. Neifeld, “SBS gain-based slow light system with a Fabry-Perot resonator,” Opt. Commun. 281, 2975-2984 (2008).
    [CrossRef]
  17. S. Dubovitsky and W. H. Steier, “Relationship between the slowing and loss in optical delay lines,” IEEE J. Quantum Electron. 42, 372-377 (2006).
    [CrossRef]
  18. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525-532 (2001).
    [CrossRef]
  19. J. Mok, C. M. de Sterke, I Littler, and B. J. Eggleton, “Dispersionless and tunable slow light in Bragg gratings,” Opt. Photon. News , 39-40 (December 2007).
    [CrossRef]
  20. P. K. Kondratko and S. L. Chuang, “Slow-to-fast light using absorption to gain switching in quantum-well semiconductor optical amplifier,” Opt. Express 15, 9963-9969 (2007).
    [CrossRef] [PubMed]
  21. N. M. Litchinitser, B. J. Eggleton, and G. P. Agrawal, “Dispersion of cascaded fiber gratings in WDM lightwave systems,” IEEE J. Lightwave Technol. 16, 1523-1529 (1998).
    [CrossRef]
  22. N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression,” IEEE J. Lightwave Technol. 15, 1303-1313 (1997).
    [CrossRef]
  23. T. Erdogan, “Fiber grating spectra,” IEEE J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  24. S. Bette, C. Caucheteur, M. Wuilpart, P. Megret, R. Garcia, S. Sales, and J. Capmany, “Spectral characterization of differential group delay in uniform fiber gratings,” Opt. Express 13, 9954-9960 (2005).
    [CrossRef] [PubMed]
  25. D. Janner, G. Galzerano, G. Della Valle, P. Laporta, and S. Longhi, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E 72, 056605 (2005).
    [CrossRef]
  26. J. Mok, C. M. Sterke, and B. J. Eggleton, “Delay-tunable gap-soliton-based slow-light system,” Opt. Express 14, 11987-11996 (2006).
    [CrossRef] [PubMed]
  27. B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high bit rate systems,” IEEE J. Lightwave Technol. 18, 1418-1432 (2000).
    [CrossRef]
  28. J. D. Downie, “Relationship of Q penalty to eye-closure penalty for NRZ and RZ signals with signal-dependent noise,” IEEE J. Lightwave Technol. 23, 2031-2038 (2005).
    [CrossRef]

2008

R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16, 2764-2777 (2008).
[CrossRef] [PubMed]

M. Lee, R. Pant, M. D. Stenner, and M. A. Neifeld, “SBS gain-based slow light system with a Fabry-Perot resonator,” Opt. Commun. 281, 2975-2984 (2008).
[CrossRef]

2007

L. Yi, Y. Jaou, W. Hu, T. Su, and S. Bigo, “Improved slow-light performance of 10 Gb/s NRZ, PSBT, and DPSK signals in fiber broadband SBS,” Opt. Express 15, 16972-16979 (2007).
[CrossRef] [PubMed]

C. Jauregui, P. Petropoulos, and D. J. Richardson, “Brillouin assisted slow-light enhancement via Fabry-Perot cavity effects,” Opt. Express 15, 5126-5135 (2007).
[CrossRef] [PubMed]

J. Mok, C. M. de Sterke, I Littler, and B. J. Eggleton, “Dispersionless and tunable slow light in Bragg gratings,” Opt. Photon. News , 39-40 (December 2007).
[CrossRef]

P. K. Kondratko and S. L. Chuang, “Slow-to-fast light using absorption to gain switching in quantum-well semiconductor optical amplifier,” Opt. Express 15, 9963-9969 (2007).
[CrossRef] [PubMed]

Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986-1988 (2007).
[CrossRef] [PubMed]

R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, and D. J. Gauthier, “Maximizing. the opening of eye diagrams for slow-light systems,” Appl. Opt. 46, 6513-6519 (2007).
[CrossRef] [PubMed]

T. Schneider, R. Henker, K. Lauterbach, and M. Junker, “Comparison of delay enhancement mechanisms for SBS-based slow light systems,” Opt. Express 15, 9606-9613 (2007).
[CrossRef] [PubMed]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” IEEE J. Lightwave Technol. 25, 201-206 (2007).
[CrossRef]

K. Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32, 217-219 (2007).
[CrossRef] [PubMed]

2006

2005

J. D. Downie, “Relationship of Q penalty to eye-closure penalty for NRZ and RZ signals with signal-dependent noise,” IEEE J. Lightwave Technol. 23, 2031-2038 (2005).
[CrossRef]

S. Bette, C. Caucheteur, M. Wuilpart, P. Megret, R. Garcia, S. Sales, and J. Capmany, “Spectral characterization of differential group delay in uniform fiber gratings,” Opt. Express 13, 9954-9960 (2005).
[CrossRef] [PubMed]

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, and S. Longhi, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E 72, 056605 (2005).
[CrossRef]

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995-10002 (2005).
[CrossRef] [PubMed]

2004

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726-730(2004).
[CrossRef]

2001

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525-532 (2001).
[CrossRef]

2000

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high bit rate systems,” IEEE J. Lightwave Technol. 18, 1418-1432 (2000).
[CrossRef]

1998

N. M. Litchinitser, B. J. Eggleton, and G. P. Agrawal, “Dispersion of cascaded fiber gratings in WDM lightwave systems,” IEEE J. Lightwave Technol. 16, 1523-1529 (1998).
[CrossRef]

1997

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression,” IEEE J. Lightwave Technol. 15, 1303-1313 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” IEEE J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

Agrawal, G. P.

N. M. Litchinitser, B. J. Eggleton, and G. P. Agrawal, “Dispersion of cascaded fiber gratings in WDM lightwave systems,” IEEE J. Lightwave Technol. 16, 1523-1529 (1998).
[CrossRef]

Ahuja, A.

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high bit rate systems,” IEEE J. Lightwave Technol. 18, 1418-1432 (2000).
[CrossRef]

Bette, S.

Bigo, S.

Boyd, R. W.

Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986-1988 (2007).
[CrossRef] [PubMed]

R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, and D. J. Gauthier, “Maximizing. the opening of eye diagrams for slow-light systems,” Appl. Opt. 46, 6513-6519 (2007).
[CrossRef] [PubMed]

R. W. Boyd, D. Gauthier, and A. L. Gaeta, “Slow light: from basics to future prospects,” Photonics Spectra , 44-50 (March 2006).

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726-730(2004).
[CrossRef]

R. W. Boyd and D. J. Gauthier, “Slow and fast light,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2002), Vol. 43, Chap. 6, pp. 497-530.
[CrossRef]

Capmany, J.

Caucheteur, C.

Chuang, S. L.

Dawes, A. M. C.

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” IEEE J. Lightwave Technol. 25, 201-206 (2007).
[CrossRef]

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995-10002 (2005).
[CrossRef] [PubMed]

de Sterke, C. M.

J. Mok, C. M. de Sterke, I Littler, and B. J. Eggleton, “Dispersionless and tunable slow light in Bragg gratings,” Opt. Photon. News , 39-40 (December 2007).
[CrossRef]

Downie, J. D.

J. D. Downie, “Relationship of Q penalty to eye-closure penalty for NRZ and RZ signals with signal-dependent noise,” IEEE J. Lightwave Technol. 23, 2031-2038 (2005).
[CrossRef]

Dubovitsky, S.

S. Dubovitsky and W. H. Steier, “Relationship between the slowing and loss in optical delay lines,” IEEE J. Quantum Electron. 42, 372-377 (2006).
[CrossRef]

Eggleton, B. J.

J. Mok, C. M. de Sterke, I Littler, and B. J. Eggleton, “Dispersionless and tunable slow light in Bragg gratings,” Opt. Photon. News , 39-40 (December 2007).
[CrossRef]

J. Mok, C. M. Sterke, and B. J. Eggleton, “Delay-tunable gap-soliton-based slow-light system,” Opt. Express 14, 11987-11996 (2006).
[CrossRef] [PubMed]

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525-532 (2001).
[CrossRef]

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high bit rate systems,” IEEE J. Lightwave Technol. 18, 1418-1432 (2000).
[CrossRef]

N. M. Litchinitser, B. J. Eggleton, and G. P. Agrawal, “Dispersion of cascaded fiber gratings in WDM lightwave systems,” IEEE J. Lightwave Technol. 16, 1523-1529 (1998).
[CrossRef]

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression,” IEEE J. Lightwave Technol. 15, 1303-1313 (1997).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” IEEE J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

Eyal, A.

Gaeta, A. L.

R. W. Boyd, D. Gauthier, and A. L. Gaeta, “Slow light: from basics to future prospects,” Photonics Spectra , 44-50 (March 2006).

Galzerano, G.

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, and S. Longhi, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E 72, 056605 (2005).
[CrossRef]

Garcia, R.

Gauthier, D.

D. Gauthier, “Slow light brings faster communication,” Phys. World 18, 30-32 (December 2005).

R. W. Boyd, D. Gauthier, and A. L. Gaeta, “Slow light: from basics to future prospects,” Photonics Spectra , 44-50 (March 2006).

Gauthier, D. J.

Heebner, J. E.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726-730(2004).
[CrossRef]

Henker, R.

Herraez, M. G.

Hotate, K.

Hu, W.

Jackson, D. J.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726-730(2004).
[CrossRef]

Janner, D.

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, and S. Longhi, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E 72, 056605 (2005).
[CrossRef]

Jaou, Y.

Jauregui, C.

Junker, M.

Kondratko, P. K.

Kuo, P.

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high bit rate systems,” IEEE J. Lightwave Technol. 18, 1418-1432 (2000).
[CrossRef]

Laporta, P.

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, and S. Longhi, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E 72, 056605 (2005).
[CrossRef]

Lauterbach, K.

Lee, M.

M. Lee, R. Pant, M. D. Stenner, and M. A. Neifeld, “SBS gain-based slow light system with a Fabry-Perot resonator,” Opt. Commun. 281, 2975-2984 (2008).
[CrossRef]

Lenz, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525-532 (2001).
[CrossRef]

Litchinitser, N. M.

N. M. Litchinitser, B. J. Eggleton, and G. P. Agrawal, “Dispersion of cascaded fiber gratings in WDM lightwave systems,” IEEE J. Lightwave Technol. 16, 1523-1529 (1998).
[CrossRef]

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression,” IEEE J. Lightwave Technol. 15, 1303-1313 (1997).
[CrossRef]

Littler, I

J. Mok, C. M. de Sterke, I Littler, and B. J. Eggleton, “Dispersionless and tunable slow light in Bragg gratings,” Opt. Photon. News , 39-40 (December 2007).
[CrossRef]

Longhi, S.

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, and S. Longhi, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E 72, 056605 (2005).
[CrossRef]

Madsen, C. K.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525-532 (2001).
[CrossRef]

Megret, P.

Mikkelsen, B.

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high bit rate systems,” IEEE J. Lightwave Technol. 18, 1418-1432 (2000).
[CrossRef]

Mok, J.

J. Mok, C. M. de Sterke, I Littler, and B. J. Eggleton, “Dispersionless and tunable slow light in Bragg gratings,” Opt. Photon. News , 39-40 (December 2007).
[CrossRef]

J. Mok, C. M. Sterke, and B. J. Eggleton, “Delay-tunable gap-soliton-based slow-light system,” Opt. Express 14, 11987-11996 (2006).
[CrossRef] [PubMed]

Neifeld, M. A.

Nielsen, T. N

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high bit rate systems,” IEEE J. Lightwave Technol. 18, 1418-1432 (2000).
[CrossRef]

Pant, R.

Patterson, D. B.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression,” IEEE J. Lightwave Technol. 15, 1303-1313 (1997).
[CrossRef]

Petropoulos, P.

Richardson, D. J.

Rogers, J. A.

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high bit rate systems,” IEEE J. Lightwave Technol. 18, 1418-1432 (2000).
[CrossRef]

Sales, S.

Schneider, T.

Schweinsberg, A.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726-730(2004).
[CrossRef]

Shi, Z.

Slusher, R. E.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525-532 (2001).
[CrossRef]

Song, K. Y.

Steier, W. H.

S. Dubovitsky and W. H. Steier, “Relationship between the slowing and loss in optical delay lines,” IEEE J. Quantum Electron. 42, 372-377 (2006).
[CrossRef]

Stenner, M. D.

Sterke, C. M.

Su, T.

Thevenaz, L.

Tur, M.

Valle, G. Della

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, and S. Longhi, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E 72, 056605 (2005).
[CrossRef]

Westbrook, P. S.

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high bit rate systems,” IEEE J. Lightwave Technol. 18, 1418-1432 (2000).
[CrossRef]

Willner, A. E.

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” IEEE J. Lightwave Technol. 25, 201-206 (2007).
[CrossRef]

Wong, V.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726-730(2004).
[CrossRef]

Wuilpart, M.

Yi, L.

Zadok, A.

Zhang, L.

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” IEEE J. Lightwave Technol. 25, 201-206 (2007).
[CrossRef]

Zhu, Z.

Appl. Opt.

IEEE J. Lightwave Technol.

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” IEEE J. Lightwave Technol. 25, 201-206 (2007).
[CrossRef]

N. M. Litchinitser, B. J. Eggleton, and G. P. Agrawal, “Dispersion of cascaded fiber gratings in WDM lightwave systems,” IEEE J. Lightwave Technol. 16, 1523-1529 (1998).
[CrossRef]

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression,” IEEE J. Lightwave Technol. 15, 1303-1313 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” IEEE J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high bit rate systems,” IEEE J. Lightwave Technol. 18, 1418-1432 (2000).
[CrossRef]

J. D. Downie, “Relationship of Q penalty to eye-closure penalty for NRZ and RZ signals with signal-dependent noise,” IEEE J. Lightwave Technol. 23, 2031-2038 (2005).
[CrossRef]

IEEE J. Quantum Electron.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726-730(2004).
[CrossRef]

S. Dubovitsky and W. H. Steier, “Relationship between the slowing and loss in optical delay lines,” IEEE J. Quantum Electron. 42, 372-377 (2006).
[CrossRef]

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525-532 (2001).
[CrossRef]

Opt. Commun.

M. Lee, R. Pant, M. D. Stenner, and M. A. Neifeld, “SBS gain-based slow light system with a Fabry-Perot resonator,” Opt. Commun. 281, 2975-2984 (2008).
[CrossRef]

Opt. Express

M. G. Herraez, K. Y. Song, and L. Thevenaz, “ Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395-1400 (2006).
[CrossRef]

R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16, 2764-2777 (2008).
[CrossRef] [PubMed]

L. Yi, Y. Jaou, W. Hu, T. Su, and S. Bigo, “Improved slow-light performance of 10 Gb/s NRZ, PSBT, and DPSK signals in fiber broadband SBS,” Opt. Express 15, 16972-16979 (2007).
[CrossRef] [PubMed]

C. Jauregui, P. Petropoulos, and D. J. Richardson, “Brillouin assisted slow-light enhancement via Fabry-Perot cavity effects,” Opt. Express 15, 5126-5135 (2007).
[CrossRef] [PubMed]

A. Zadok, A. Eyal, and M. Tur, “Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp,” Opt. Express 14, 8498-8505(2006).
[CrossRef] [PubMed]

T. Schneider, R. Henker, K. Lauterbach, and M. Junker, “Comparison of delay enhancement mechanisms for SBS-based slow light systems,” Opt. Express 15, 9606-9613 (2007).
[CrossRef] [PubMed]

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995-10002 (2005).
[CrossRef] [PubMed]

P. K. Kondratko and S. L. Chuang, “Slow-to-fast light using absorption to gain switching in quantum-well semiconductor optical amplifier,” Opt. Express 15, 9963-9969 (2007).
[CrossRef] [PubMed]

S. Bette, C. Caucheteur, M. Wuilpart, P. Megret, R. Garcia, S. Sales, and J. Capmany, “Spectral characterization of differential group delay in uniform fiber gratings,” Opt. Express 13, 9954-9960 (2005).
[CrossRef] [PubMed]

J. Mok, C. M. Sterke, and B. J. Eggleton, “Delay-tunable gap-soliton-based slow-light system,” Opt. Express 14, 11987-11996 (2006).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Photon. News

J. Mok, C. M. de Sterke, I Littler, and B. J. Eggleton, “Dispersionless and tunable slow light in Bragg gratings,” Opt. Photon. News , 39-40 (December 2007).
[CrossRef]

Photonics Spectra

R. W. Boyd, D. Gauthier, and A. L. Gaeta, “Slow light: from basics to future prospects,” Photonics Spectra , 44-50 (March 2006).

Phys. Rev. E

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, and S. Longhi, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E 72, 056605 (2005).
[CrossRef]

Phys. World

D. Gauthier, “Slow light brings faster communication,” Phys. World 18, 30-32 (December 2005).

Other

R. W. Boyd and D. J. Gauthier, “Slow and fast light,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2002), Vol. 43, Chap. 6, pp. 497-530.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

SBS characteristics. (a)–(c) Real and (d)–(f) imaginary spectra versus normalized frequency for SBS gain-only (dotted curve) and gain + absorption (solid curve) media at (a), (d)  Δ w p / Ω B = 0.8 , (b), (e)  Δ w p / Ω B = 1.3 , and (c), (f)  Δ w p / Ω B = 1.8 .

Fig. 2
Fig. 2

FBG characteristics. (a) Transmission spectrum on the left axis (solid curve) and phase spectrum on the right axis (dashed curve), (b) corresponding group delay τ ( ω ) for a uniform FBG, and (c) normalized pulse sequence (solid curve), transmission spectrum (dotted curve), and group delay (dashed curve) spectrum for a frequency detuned FBG ( δ FBG / Ω B = 0.6 ). κ is a coupling coefficient, δ is the detuning coefficient, and Δ δ is the sidelobe width.

Fig. 3
Fig. 3

(a) Transmission and (b) phase spectra for the SBS, FBG, and GAB1 systems with parameters g L = 10 , Δ w p / Ω B = 0.41 , δ FBG / Ω B = 0.5 , and M = 50,000 .

Fig. 4
Fig. 4

Input and output pulses after propagating through the GA and GAB1 systems. Input pulse width is 120 ps .

Fig. 5
Fig. 5

(a) Transmission spectra for individual FBGs (FBG1 and FBG2), (b) phase spectra for individual FBGs and the overall B2 system, (c) transmission for the combined B2 system, and (d) group delay for B2 system.

Fig. 6
Fig. 6

(a) Transmission and (b) phase spectra for the GA, B2, and GAB2 systems with parameters g L = 10 , Δ w p / Ω B = 0.41 , δ FBG / Ω B = 0.6 , and M = 50,000 . x axis is expanded from Fig. 5.

Fig. 7
Fig. 7

Input ( T 0 = 120 ps ) and output pulses after propagating through GA, GAB1, GAB2 systems.

Fig. 8
Fig. 8

Optimized (a) transmission (Log scale) and (b) phase spectra for an example GAB2 system. Optimum parameters are g L = 10 , Δ w p / Ω B = 0.425 , M = 50,000 , and δ FBG / Ω B = 0.725 at B r = 3 Gbps .

Fig. 9
Fig. 9

Output eye diagrams for an input data stream after propagation through (a) the GA system, (b) the GAB1 system, and (c) the GAB2 system at B r = 3 Gbps . Dotted lines represent the location of the maximum input and output eye openings. Double-sided arrow represents delay ( Δ T ).

Fig. 10
Fig. 10

Maximum fractional pulse delay versus bit rates for the GA and GAB1 systems with two different pump power constraints. (1) GA system with P 600 mW , (2) GA system with P 1200 mW , (3) GAB1 system with P 600 mW , (4) GAB1 system with P 1200 mW .

Fig. 11
Fig. 11

Optimal parameters versus bit rates for the GA and GAB1 systems. (a) Gain exponent g L , (b) normalized bandwidth of pump power spectrum Δ w p / Ω B , (c) total pump power P tot , (d) distortion, (e) normalized frequency separation δ FBG / Ω B of a FBG, and (f) number of grating period M.

Fig. 12
Fig. 12

Maximum fractional pulse delay versus bit rates for the GAB1 and GAB2 systems with two different pump power constraints. (1) GAB1 system with P 600 mW , (2) GAB1 system with P 1200 mW , (3) GAB2 system with P 600 mW , (4) GAB2 system with P 1200 mW .

Fig. 13
Fig. 13

Optimal parameters versus bit rates for the GA and GAB1 systems. (a) Gain exponent g L , (b) normalized bandwidth of pump power spectrum Δ w p / Ω B , (c) total pump power P tot , (d) distortion, (e) normalized frequency separation δ FBG / Ω B of a FBG, and (f) number of grating period M.

Tables (1)

Tables Icon

Table 1 Maximum Fractional Pulse Delay and Total Required Pump Power (mW) for Five Candidate Systems at a BER of 3 Gbps

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

k ( ω ) = k 0 ˜ ( ω ) P p ( ω ) ,
k 0 ˜ ( ω ) = ( g 0 P 0 γ A ( ω ω s + j 2 γ ) ) ,
P p ( ω ) = P 0 π Δ ω p exp [ ( ω ( ω s + Ω B ) Δ w p ) 2 ] ,
k g ( ω ) = g 0 P 0 π γ 2 A Δ ω p ( e ξ + 2 erf c ( j ξ + ) ) ,
k g a ( ω ) = g 0 P 0 π γ 2 A Δ ω p ( e ξ + 2 erf c ( j ξ + ) e ξ 2 erf c ( j ξ ) ) .
T B 1 ( w ) = q q cos h ( q L g ) i δ sin h ( q L g ) ,
τ ( ω ) = d ϕ ( ω ) d ω n L g c 1 1 ( κ / δ ) 2 .
T GAB 1 ( ω ) = T GA ( ω ) * T B 1 ( ω ) .
T B 2 = q q cos h ( q L g ) i δ sin h ( q L g ) * q + q + cos h ( q + L g ) i δ sin h ( q + L g ) ,
q ± = κ 2 ( n c ( ω ( ω s ± δ FBG ) ) ) 2 .
T GAB 2 ( ω ) = T GA ( ω ) * T B 2 ( ω ) .
g L 10.
P tot = P p ( ω ) d ω .
M 50,000 ,
D = 1 E O ,
B E R = 1 2 e r f c ( E O 2 ( σ 1 + σ 0 ) ) ,

Metrics