Abstract

Design and performance parameters for a broadband, high-resolution spatial heterodyne spectrometer (SHS) are reported. The Mark 1 SHS achieves more than a factor of 5 in continuous wavenumber coverage with a design resolving power in the hundreds of thousands.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Dohi and T. Suzuki, “Attainment of high-resolution holographic Fourier transform spectroscopy,” Appl. Opt. 10, 1137-1140 (1971).
  2. A. Kitade and K. Yoshihara, “Application of holography to infrared spectroscopy,” Jpn. J. Appl. Phys. 13, 87-92(1974).
    [CrossRef]
  3. H. J. Caulfield, “Holographic spectroscopy,” Opt. Eng. 13, 481-482 (1974).
  4. K. Yoshihara, K. Nakashima, and M. Higuchi, “Holographic spectroscopy using a Mach-Zehnder interferometer,” Jpn. J. Appl. Phys. 15, 1169-1170 (1976).
    [CrossRef]
  5. T. H. Barnes, T. Eiju, and K. Matsuda, “Heterodyned photodiode array Fourier-transform spectrometer,” Appl. Opt. 25, 1864-1866 (1986).
  6. S. Minami, “Fourier-transform spectroscopy using image sensors,” Mikrochim. Acta 3, 309-324 (1987).
  7. N. Douglas, H. Butcher, and M. A. Melis, “Heterodyned, holographic spectroscopy--first results with the FRINGHE spectrometer,” Astrophys. Space Sci. 171, 307-318 (1990).
    [CrossRef]
  8. H. N. Butcher, N. Douglas, S. Frandsen, and F. Maaswinkel, “A practical non-scanning FTS for astronomy,” in High-Resolution Fourier Transform Spectroscopy, Vol. 6 of 1989 OSA Technical Digest Series (Optical Society of America, 1989), pp. 9-12.
  9. J. M. Harlander and F. L. Roesler, “Spatial heterodyne spectroscopy. A novel interferometric technique for ground-based and space astronomy,” Proc. SPIE 1235, 622-633 (1990).
    [CrossRef]
  10. F. L. Roesler and J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Proc. SPIE 1318, 234-243 (1990).
    [CrossRef]
  11. J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Englert, and R. R. Conway, “SHIMMER: a spatial heterodyne spectrometer for remote sensing of Earth's middle atmosphere,” Appl. Opt. 41, 1343-1352 (2002).
    [CrossRef]
  12. J. M. Harlander, F. L. Roesler, C. R. Englert, J. G. Cardon, R. R. Conway, C. M. Brown, and J. Wimperis, “Robust monolithic ultraviolet interferometer for the SHIMMER instrument on STPSat-1,” Appl. Opt. 42, 2829-2834 (2003).
    [CrossRef]
  13. J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Ph.D. thesis (University of Wisconsin Madison, 1991).
  14. J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far ultraviolet wavelengths,” Astrophys. J. 396, 730-740 (1992).
    [CrossRef]
  15. J. E. Lawler, Z. Labby, F. L. Roesler, and J. M. Harlander, “A spatial heterodyne spectrometer for laboratory astrophysics; first interferogram,” presented at the NASA Laboratory Astrophysics Workshop, Las Vegas, Nevada, 14-16 February 2006.
  16. J. E. Lawler, J. M. Harlander, Z. Labby, and F. L. Roesler, “A broadband, high-resolution spatial heterodyne spectrometer,” presented at the 9th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS-9), Lund University, Lund, Sweden, 7-10 August 2007.
  17. J. M. Harlander, J. E. Lawler, Z. Labby, and F. L. Roesler, “A high-resolution broad spectral range spatial heterodyne spectrometer for UV laboratory astrophysics,” presented at the Joint Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment Meeting of the Optical Society of America, Santa Fe, New Mexico, 11-15 February 2007.
  18. S. Watchorn, F. L. Roesler, J. M. Harlander, K. P. Jaehnig, R. J. Reynolds, and W. T. Sanders, “Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium,” Proc. SPIE 4498, 284-295 (2001).
  19. Princeton Instruments, “X-ray cameras,” http://www.piacton.com/products/xraycam/.
  20. J. H. Giles, T. D. Ridder, R. H. Williams, D. A. Jones, and M. B. Denton, “Product review: selecting a CCD camera,” Anal. Chem. 70, 663A (1998).
    [CrossRef]
  21. T. Guy, “Choosing a CCD sensor for high-performance imaging,” Electronic Products (2004), http://www2.electronicproducts.com/Choosing_a_CCD_sensor_for_high-performance_imaging-article-kodak-feb2004-html.aspx.
  22. Newport-Richardson Gratings, “Table 4: echelle gratings,” http://gratings.newport.com/products/table4.asp.
  23. A. Offner, “Unit power imaging catoptric anastigmat,” U.S. patent 3,748,015 (24 June 1973).
  24. J. W. Brault, “High-precision Fourier transform spectrometry: the critical role of phase corrections,” Mikrochim. Acta 3, 215-227 (1987).
  25. R. C. M. Learner, A. P. Thorne, I. Wynnejones, J. W. Brault, and M. C. Abrams, “Phase correction of emission-line Fourier-transform spectra,” J. Opt. Soc. Am. A 12, 2165-2717(1995).
    [CrossRef]
  26. C. R. Englert, J. M. Harlander, J. G. Cardon, and F. L. Roesler, “Correction of phase distortion in spatial heterodyne spectroscopy,” Appl. Opt. 43, 6680-6687 (2004).
    [CrossRef]
  27. W. J. Smith, “Image formation: geometrical and physical optics,” in Handbook of Optics, sponsored by the Optical Society of America, W.G.Driscoll and W.Vaughan, eds. (McGraw-Hill, 1978), Sect. 2, pp. 2-60.
  28. D. J. Schroeder, Astronomical Optics, 2nd ed. (Academic, 2000), p. 132.
  29. A. Offner, “Catoptric anastigmat afocal optical system,” U.S. patent 3,674,334 (4 July 1972).

2004

2003

2002

2001

S. Watchorn, F. L. Roesler, J. M. Harlander, K. P. Jaehnig, R. J. Reynolds, and W. T. Sanders, “Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium,” Proc. SPIE 4498, 284-295 (2001).

1998

J. H. Giles, T. D. Ridder, R. H. Williams, D. A. Jones, and M. B. Denton, “Product review: selecting a CCD camera,” Anal. Chem. 70, 663A (1998).
[CrossRef]

1995

1992

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far ultraviolet wavelengths,” Astrophys. J. 396, 730-740 (1992).
[CrossRef]

1990

N. Douglas, H. Butcher, and M. A. Melis, “Heterodyned, holographic spectroscopy--first results with the FRINGHE spectrometer,” Astrophys. Space Sci. 171, 307-318 (1990).
[CrossRef]

J. M. Harlander and F. L. Roesler, “Spatial heterodyne spectroscopy. A novel interferometric technique for ground-based and space astronomy,” Proc. SPIE 1235, 622-633 (1990).
[CrossRef]

F. L. Roesler and J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Proc. SPIE 1318, 234-243 (1990).
[CrossRef]

1987

S. Minami, “Fourier-transform spectroscopy using image sensors,” Mikrochim. Acta 3, 309-324 (1987).

J. W. Brault, “High-precision Fourier transform spectrometry: the critical role of phase corrections,” Mikrochim. Acta 3, 215-227 (1987).

1986

1976

K. Yoshihara, K. Nakashima, and M. Higuchi, “Holographic spectroscopy using a Mach-Zehnder interferometer,” Jpn. J. Appl. Phys. 15, 1169-1170 (1976).
[CrossRef]

1974

A. Kitade and K. Yoshihara, “Application of holography to infrared spectroscopy,” Jpn. J. Appl. Phys. 13, 87-92(1974).
[CrossRef]

H. J. Caulfield, “Holographic spectroscopy,” Opt. Eng. 13, 481-482 (1974).

1971

Abrams, M. C.

Barnes, T. H.

Brault, J. W.

R. C. M. Learner, A. P. Thorne, I. Wynnejones, J. W. Brault, and M. C. Abrams, “Phase correction of emission-line Fourier-transform spectra,” J. Opt. Soc. Am. A 12, 2165-2717(1995).
[CrossRef]

J. W. Brault, “High-precision Fourier transform spectrometry: the critical role of phase corrections,” Mikrochim. Acta 3, 215-227 (1987).

Brown, C. M.

Butcher, H.

N. Douglas, H. Butcher, and M. A. Melis, “Heterodyned, holographic spectroscopy--first results with the FRINGHE spectrometer,” Astrophys. Space Sci. 171, 307-318 (1990).
[CrossRef]

Butcher, H. N.

H. N. Butcher, N. Douglas, S. Frandsen, and F. Maaswinkel, “A practical non-scanning FTS for astronomy,” in High-Resolution Fourier Transform Spectroscopy, Vol. 6 of 1989 OSA Technical Digest Series (Optical Society of America, 1989), pp. 9-12.

Cardon, J. G.

Caulfield, H. J.

H. J. Caulfield, “Holographic spectroscopy,” Opt. Eng. 13, 481-482 (1974).

Conway, R. R.

Denton, M. B.

J. H. Giles, T. D. Ridder, R. H. Williams, D. A. Jones, and M. B. Denton, “Product review: selecting a CCD camera,” Anal. Chem. 70, 663A (1998).
[CrossRef]

Dohi, T.

Douglas, N.

N. Douglas, H. Butcher, and M. A. Melis, “Heterodyned, holographic spectroscopy--first results with the FRINGHE spectrometer,” Astrophys. Space Sci. 171, 307-318 (1990).
[CrossRef]

H. N. Butcher, N. Douglas, S. Frandsen, and F. Maaswinkel, “A practical non-scanning FTS for astronomy,” in High-Resolution Fourier Transform Spectroscopy, Vol. 6 of 1989 OSA Technical Digest Series (Optical Society of America, 1989), pp. 9-12.

Eiju, T.

Englert, C. R.

Frandsen, S.

H. N. Butcher, N. Douglas, S. Frandsen, and F. Maaswinkel, “A practical non-scanning FTS for astronomy,” in High-Resolution Fourier Transform Spectroscopy, Vol. 6 of 1989 OSA Technical Digest Series (Optical Society of America, 1989), pp. 9-12.

Giles, J. H.

J. H. Giles, T. D. Ridder, R. H. Williams, D. A. Jones, and M. B. Denton, “Product review: selecting a CCD camera,” Anal. Chem. 70, 663A (1998).
[CrossRef]

Guy, T.

T. Guy, “Choosing a CCD sensor for high-performance imaging,” Electronic Products (2004), http://www2.electronicproducts.com/Choosing_a_CCD_sensor_for_high-performance_imaging-article-kodak-feb2004-html.aspx.

Harlander, J.

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far ultraviolet wavelengths,” Astrophys. J. 396, 730-740 (1992).
[CrossRef]

Harlander, J. M.

C. R. Englert, J. M. Harlander, J. G. Cardon, and F. L. Roesler, “Correction of phase distortion in spatial heterodyne spectroscopy,” Appl. Opt. 43, 6680-6687 (2004).
[CrossRef]

J. M. Harlander, F. L. Roesler, C. R. Englert, J. G. Cardon, R. R. Conway, C. M. Brown, and J. Wimperis, “Robust monolithic ultraviolet interferometer for the SHIMMER instrument on STPSat-1,” Appl. Opt. 42, 2829-2834 (2003).
[CrossRef]

J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Englert, and R. R. Conway, “SHIMMER: a spatial heterodyne spectrometer for remote sensing of Earth's middle atmosphere,” Appl. Opt. 41, 1343-1352 (2002).
[CrossRef]

S. Watchorn, F. L. Roesler, J. M. Harlander, K. P. Jaehnig, R. J. Reynolds, and W. T. Sanders, “Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium,” Proc. SPIE 4498, 284-295 (2001).

F. L. Roesler and J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Proc. SPIE 1318, 234-243 (1990).
[CrossRef]

J. M. Harlander and F. L. Roesler, “Spatial heterodyne spectroscopy. A novel interferometric technique for ground-based and space astronomy,” Proc. SPIE 1235, 622-633 (1990).
[CrossRef]

J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Ph.D. thesis (University of Wisconsin Madison, 1991).

J. E. Lawler, Z. Labby, F. L. Roesler, and J. M. Harlander, “A spatial heterodyne spectrometer for laboratory astrophysics; first interferogram,” presented at the NASA Laboratory Astrophysics Workshop, Las Vegas, Nevada, 14-16 February 2006.

J. E. Lawler, J. M. Harlander, Z. Labby, and F. L. Roesler, “A broadband, high-resolution spatial heterodyne spectrometer,” presented at the 9th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS-9), Lund University, Lund, Sweden, 7-10 August 2007.

J. M. Harlander, J. E. Lawler, Z. Labby, and F. L. Roesler, “A high-resolution broad spectral range spatial heterodyne spectrometer for UV laboratory astrophysics,” presented at the Joint Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment Meeting of the Optical Society of America, Santa Fe, New Mexico, 11-15 February 2007.

Higuchi, M.

K. Yoshihara, K. Nakashima, and M. Higuchi, “Holographic spectroscopy using a Mach-Zehnder interferometer,” Jpn. J. Appl. Phys. 15, 1169-1170 (1976).
[CrossRef]

Jaehnig, K. P.

S. Watchorn, F. L. Roesler, J. M. Harlander, K. P. Jaehnig, R. J. Reynolds, and W. T. Sanders, “Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium,” Proc. SPIE 4498, 284-295 (2001).

Jones, D. A.

J. H. Giles, T. D. Ridder, R. H. Williams, D. A. Jones, and M. B. Denton, “Product review: selecting a CCD camera,” Anal. Chem. 70, 663A (1998).
[CrossRef]

Kitade, A.

A. Kitade and K. Yoshihara, “Application of holography to infrared spectroscopy,” Jpn. J. Appl. Phys. 13, 87-92(1974).
[CrossRef]

Labby, Z.

J. E. Lawler, J. M. Harlander, Z. Labby, and F. L. Roesler, “A broadband, high-resolution spatial heterodyne spectrometer,” presented at the 9th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS-9), Lund University, Lund, Sweden, 7-10 August 2007.

J. M. Harlander, J. E. Lawler, Z. Labby, and F. L. Roesler, “A high-resolution broad spectral range spatial heterodyne spectrometer for UV laboratory astrophysics,” presented at the Joint Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment Meeting of the Optical Society of America, Santa Fe, New Mexico, 11-15 February 2007.

J. E. Lawler, Z. Labby, F. L. Roesler, and J. M. Harlander, “A spatial heterodyne spectrometer for laboratory astrophysics; first interferogram,” presented at the NASA Laboratory Astrophysics Workshop, Las Vegas, Nevada, 14-16 February 2006.

Lawler, J. E.

J. E. Lawler, J. M. Harlander, Z. Labby, and F. L. Roesler, “A broadband, high-resolution spatial heterodyne spectrometer,” presented at the 9th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS-9), Lund University, Lund, Sweden, 7-10 August 2007.

J. E. Lawler, Z. Labby, F. L. Roesler, and J. M. Harlander, “A spatial heterodyne spectrometer for laboratory astrophysics; first interferogram,” presented at the NASA Laboratory Astrophysics Workshop, Las Vegas, Nevada, 14-16 February 2006.

J. M. Harlander, J. E. Lawler, Z. Labby, and F. L. Roesler, “A high-resolution broad spectral range spatial heterodyne spectrometer for UV laboratory astrophysics,” presented at the Joint Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment Meeting of the Optical Society of America, Santa Fe, New Mexico, 11-15 February 2007.

Learner, R. C. M.

Maaswinkel, F.

H. N. Butcher, N. Douglas, S. Frandsen, and F. Maaswinkel, “A practical non-scanning FTS for astronomy,” in High-Resolution Fourier Transform Spectroscopy, Vol. 6 of 1989 OSA Technical Digest Series (Optical Society of America, 1989), pp. 9-12.

Matsuda, K.

Melis, M. A.

N. Douglas, H. Butcher, and M. A. Melis, “Heterodyned, holographic spectroscopy--first results with the FRINGHE spectrometer,” Astrophys. Space Sci. 171, 307-318 (1990).
[CrossRef]

Minami, S.

S. Minami, “Fourier-transform spectroscopy using image sensors,” Mikrochim. Acta 3, 309-324 (1987).

Nakashima, K.

K. Yoshihara, K. Nakashima, and M. Higuchi, “Holographic spectroscopy using a Mach-Zehnder interferometer,” Jpn. J. Appl. Phys. 15, 1169-1170 (1976).
[CrossRef]

Offner, A.

A. Offner, “Unit power imaging catoptric anastigmat,” U.S. patent 3,748,015 (24 June 1973).

A. Offner, “Catoptric anastigmat afocal optical system,” U.S. patent 3,674,334 (4 July 1972).

Reynolds, R. J.

S. Watchorn, F. L. Roesler, J. M. Harlander, K. P. Jaehnig, R. J. Reynolds, and W. T. Sanders, “Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium,” Proc. SPIE 4498, 284-295 (2001).

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far ultraviolet wavelengths,” Astrophys. J. 396, 730-740 (1992).
[CrossRef]

Ridder, T. D.

J. H. Giles, T. D. Ridder, R. H. Williams, D. A. Jones, and M. B. Denton, “Product review: selecting a CCD camera,” Anal. Chem. 70, 663A (1998).
[CrossRef]

Roesler, F. L.

C. R. Englert, J. M. Harlander, J. G. Cardon, and F. L. Roesler, “Correction of phase distortion in spatial heterodyne spectroscopy,” Appl. Opt. 43, 6680-6687 (2004).
[CrossRef]

J. M. Harlander, F. L. Roesler, C. R. Englert, J. G. Cardon, R. R. Conway, C. M. Brown, and J. Wimperis, “Robust monolithic ultraviolet interferometer for the SHIMMER instrument on STPSat-1,” Appl. Opt. 42, 2829-2834 (2003).
[CrossRef]

J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Englert, and R. R. Conway, “SHIMMER: a spatial heterodyne spectrometer for remote sensing of Earth's middle atmosphere,” Appl. Opt. 41, 1343-1352 (2002).
[CrossRef]

S. Watchorn, F. L. Roesler, J. M. Harlander, K. P. Jaehnig, R. J. Reynolds, and W. T. Sanders, “Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium,” Proc. SPIE 4498, 284-295 (2001).

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far ultraviolet wavelengths,” Astrophys. J. 396, 730-740 (1992).
[CrossRef]

J. M. Harlander and F. L. Roesler, “Spatial heterodyne spectroscopy. A novel interferometric technique for ground-based and space astronomy,” Proc. SPIE 1235, 622-633 (1990).
[CrossRef]

F. L. Roesler and J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Proc. SPIE 1318, 234-243 (1990).
[CrossRef]

J. E. Lawler, Z. Labby, F. L. Roesler, and J. M. Harlander, “A spatial heterodyne spectrometer for laboratory astrophysics; first interferogram,” presented at the NASA Laboratory Astrophysics Workshop, Las Vegas, Nevada, 14-16 February 2006.

J. M. Harlander, J. E. Lawler, Z. Labby, and F. L. Roesler, “A high-resolution broad spectral range spatial heterodyne spectrometer for UV laboratory astrophysics,” presented at the Joint Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment Meeting of the Optical Society of America, Santa Fe, New Mexico, 11-15 February 2007.

J. E. Lawler, J. M. Harlander, Z. Labby, and F. L. Roesler, “A broadband, high-resolution spatial heterodyne spectrometer,” presented at the 9th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS-9), Lund University, Lund, Sweden, 7-10 August 2007.

Sanders, W. T.

S. Watchorn, F. L. Roesler, J. M. Harlander, K. P. Jaehnig, R. J. Reynolds, and W. T. Sanders, “Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium,” Proc. SPIE 4498, 284-295 (2001).

Schroeder, D. J.

D. J. Schroeder, Astronomical Optics, 2nd ed. (Academic, 2000), p. 132.

Smith, W. J.

W. J. Smith, “Image formation: geometrical and physical optics,” in Handbook of Optics, sponsored by the Optical Society of America, W.G.Driscoll and W.Vaughan, eds. (McGraw-Hill, 1978), Sect. 2, pp. 2-60.

Suzuki, T.

Thorne, A. P.

Watchorn, S.

S. Watchorn, F. L. Roesler, J. M. Harlander, K. P. Jaehnig, R. J. Reynolds, and W. T. Sanders, “Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium,” Proc. SPIE 4498, 284-295 (2001).

Williams, R. H.

J. H. Giles, T. D. Ridder, R. H. Williams, D. A. Jones, and M. B. Denton, “Product review: selecting a CCD camera,” Anal. Chem. 70, 663A (1998).
[CrossRef]

Wimperis, J.

Wynnejones, I.

Yoshihara, K.

K. Yoshihara, K. Nakashima, and M. Higuchi, “Holographic spectroscopy using a Mach-Zehnder interferometer,” Jpn. J. Appl. Phys. 15, 1169-1170 (1976).
[CrossRef]

A. Kitade and K. Yoshihara, “Application of holography to infrared spectroscopy,” Jpn. J. Appl. Phys. 13, 87-92(1974).
[CrossRef]

Anal. Chem.

J. H. Giles, T. D. Ridder, R. H. Williams, D. A. Jones, and M. B. Denton, “Product review: selecting a CCD camera,” Anal. Chem. 70, 663A (1998).
[CrossRef]

Appl. Opt.

Astrophys. J.

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far ultraviolet wavelengths,” Astrophys. J. 396, 730-740 (1992).
[CrossRef]

Astrophys. Space Sci.

N. Douglas, H. Butcher, and M. A. Melis, “Heterodyned, holographic spectroscopy--first results with the FRINGHE spectrometer,” Astrophys. Space Sci. 171, 307-318 (1990).
[CrossRef]

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

K. Yoshihara, K. Nakashima, and M. Higuchi, “Holographic spectroscopy using a Mach-Zehnder interferometer,” Jpn. J. Appl. Phys. 15, 1169-1170 (1976).
[CrossRef]

A. Kitade and K. Yoshihara, “Application of holography to infrared spectroscopy,” Jpn. J. Appl. Phys. 13, 87-92(1974).
[CrossRef]

Mikrochim. Acta

S. Minami, “Fourier-transform spectroscopy using image sensors,” Mikrochim. Acta 3, 309-324 (1987).

J. W. Brault, “High-precision Fourier transform spectrometry: the critical role of phase corrections,” Mikrochim. Acta 3, 215-227 (1987).

Opt. Eng.

H. J. Caulfield, “Holographic spectroscopy,” Opt. Eng. 13, 481-482 (1974).

Proc. SPIE

J. M. Harlander and F. L. Roesler, “Spatial heterodyne spectroscopy. A novel interferometric technique for ground-based and space astronomy,” Proc. SPIE 1235, 622-633 (1990).
[CrossRef]

F. L. Roesler and J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Proc. SPIE 1318, 234-243 (1990).
[CrossRef]

S. Watchorn, F. L. Roesler, J. M. Harlander, K. P. Jaehnig, R. J. Reynolds, and W. T. Sanders, “Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium,” Proc. SPIE 4498, 284-295 (2001).

Other

Princeton Instruments, “X-ray cameras,” http://www.piacton.com/products/xraycam/.

J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Ph.D. thesis (University of Wisconsin Madison, 1991).

J. E. Lawler, Z. Labby, F. L. Roesler, and J. M. Harlander, “A spatial heterodyne spectrometer for laboratory astrophysics; first interferogram,” presented at the NASA Laboratory Astrophysics Workshop, Las Vegas, Nevada, 14-16 February 2006.

J. E. Lawler, J. M. Harlander, Z. Labby, and F. L. Roesler, “A broadband, high-resolution spatial heterodyne spectrometer,” presented at the 9th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS-9), Lund University, Lund, Sweden, 7-10 August 2007.

J. M. Harlander, J. E. Lawler, Z. Labby, and F. L. Roesler, “A high-resolution broad spectral range spatial heterodyne spectrometer for UV laboratory astrophysics,” presented at the Joint Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment Meeting of the Optical Society of America, Santa Fe, New Mexico, 11-15 February 2007.

H. N. Butcher, N. Douglas, S. Frandsen, and F. Maaswinkel, “A practical non-scanning FTS for astronomy,” in High-Resolution Fourier Transform Spectroscopy, Vol. 6 of 1989 OSA Technical Digest Series (Optical Society of America, 1989), pp. 9-12.

W. J. Smith, “Image formation: geometrical and physical optics,” in Handbook of Optics, sponsored by the Optical Society of America, W.G.Driscoll and W.Vaughan, eds. (McGraw-Hill, 1978), Sect. 2, pp. 2-60.

D. J. Schroeder, Astronomical Optics, 2nd ed. (Academic, 2000), p. 132.

A. Offner, “Catoptric anastigmat afocal optical system,” U.S. patent 3,674,334 (4 July 1972).

T. Guy, “Choosing a CCD sensor for high-performance imaging,” Electronic Products (2004), http://www2.electronicproducts.com/Choosing_a_CCD_sensor_for_high-performance_imaging-article-kodak-feb2004-html.aspx.

Newport-Richardson Gratings, “Table 4: echelle gratings,” http://gratings.newport.com/products/table4.asp.

A. Offner, “Unit power imaging catoptric anastigmat,” U.S. patent 3,748,015 (24 June 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the Mark 1 SHS. For simplicity, in this figure off-axis mirrors have been replaced by lenses L 1 and L 2 .

Fig. 2
Fig. 2

Schematic of a concave spherical mirror with an entrance pupil offset from the mirror surface. Two beams of collimated light with an angular separation of θ are incident.

Fig. 3
Fig. 3

Schematic of the fringe-imaging system based on an afocal three-mirror telescope. The beam deflection angle 2 θ from the tip angle θ of the concave mirrors is much smaller in the Mark 1 SHS than indicated in the figure. Only the central unused beam or ray of the interferometer is shown.

Fig. 4
Fig. 4

Spots in the spectrometer mode plane from monochromatic illumination at a low wavenumber halfway between order m and m 1 near σ min 9000 cm 1 . The top two spots are from one grating, and the bottom two spots are from the other grating. (The width of actual spots is larger in proportion to their separation than shown in this figure.)

Fig. 5
Fig. 5

Spectrum or transformed CCD frame with monochromatic illumination at a low wavenumber halfway between order m and m 1 near σ min 9000 cm 1 . Desired spectral data are indicated by filled circles, and ghosts are indicated by open circles. (The widths of actual peaks in the spectrum are much smaller in proportion to their separation than shown in this figure.)

Fig. 6
Fig. 6

Spots in the spectrometer mode plane with monochromatic illumination at a high wavenumber halfway between order m and m 1 near σ max 66,666   cm 1 . The top row of spots is from one grating, and the bottom row of spots is from the other grating. Filled circles represent desired orders, and open circles are other orders. (The width of actual spots is larger in proportion to their separation than shown in this figure.)

Fig. 7
Fig. 7

Spots in the spectrometer mode plane with monochromatic illumination at a high wavenumber halfway between order m and m 1 near σ max 66,666   cm 1 . The top row of spots is from one grating, and the bottom row of spots is from the other grating. A mask for shadow ghost suppression has been added. This mask could be rotated about a horizontal axis in the plane in the figure to sequentially record the above- and below-blaze wavenumbers. An alternative is to cut this mask and an antisymmetric mask in a rotating wheel.

Fig. 8
Fig. 8

Mercury spectrum taken with the Mark 1 SHS. Lines indicated with letters are identified in Table 2 along with their fractional order number. The location of the He line plotted in Fig. 9f is shown near the left edge. This spectrum is from two CCD frames, each with 300 s of integration.

Fig. 9
Fig. 9

Five Hg and one He line profiles taken with the Mark 1 SHS. The Hg line profiles are from the data of Fig. 8.

Fig. 10
Fig. 10

Data from a phase stability test on Mark 1 SHS using the Hg 546 nm line. The imaginary part of Fourier transform (FT) is shown, because it is dispersion shaped and thus sensitive to drift. The same 64 pixels from a single row of three transformed CCD frames are shown and offset vertically. Each CCD frame was recorded 1 h apart.

Fig. 11
Fig. 11

Quantitative phase shift from the derived from the data in Fig. 10 and additional interferograms taken at 30 min intervals. The maximum phase shift is occurs in the first half hour is approximately 0.04 wave.

Tables (3)

Tables Icon

Table 1 Wavefront Shear Analysis for Wavenumbers Halfway between Orders a

Tables Icon

Table 2 Wavelengths and Order Numbers for Lines Identified in Fig. 8 a

Tables Icon

Table 3 Fringe Formation Efficiency Measurements

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

2 σ max D sin θ bl < m max = 512 .
Δ σ gr = 1 / ( 4 × W xgr × sin θ bl ) = 0.029 cm 1 .
R gr = σ max Δ σ gr 2,300,000 .
R cam = σ max Δ σ cam = N xpix × m max = N xpix × N ypix / 4 1,048,000 .
Δ σ cam = M / ( 4 × N xpix × w pix × tan θ bl ) .
d θ d λ = 2 tan θ bl λ .
d λ 1 / 2 λ 2 m ,
d θ 1 / 2 tan θ bl m .
Λ min = λ 2 sin ( d θ 1 / 2 / 2 ) λ d θ 1 / 2 m λ 2 tan θ bl = D cos θ bl = 19.6 μm .
M = 2 × w pix Λ min = 1.38 .
d θ osep = m max × M N ypix × w pix × σ max = 0.00383   rad .
R 0 = min ( R gr , R cam ) = 1,048,000 .
β = 8 / R 0 = 0.00276   rad .
β SA = y 3 2 R 3 ,
β C = ( W R ) θ y 2 R 3 ,
β A = 2 ( W R ) θ 2 y R 3 ,
Δ z = S S r 4 C S y r 2 d θ + A S y 2 d θ 2 + K S r 2 d θ 2 + D S y d θ 3 ,
M = R 3 / R 1 .
1 / R 2 = ( 1 / R 1 + 1 / R 3 ) .
offset = t [ 2 sin θ bs sin ( 2 θ bs ) n 2 sin 2 ( θ bs ) ] .
shear _ x = t [ 2 sin ( θ bs + d θ 1 / 2 ) sin ( 2 θ bs + 2 d θ 1 / 2 ) n 2 sin 2 ( θ bs + d θ 1 / 2 ) 2 sin ( θ bs d θ 1 / 2 ) + sin ( 2 θ bs 2 d θ 1 / 2 ) n 2 sin 2 ( θ bs + d θ 1 / 2 ) ] ,
shear y = t [ 2 sin θ bs sin ( 2 θ bs ) n 2 sin 2 ( θ bs ) ] 2 d θ osep .
Δ z = S S r 4 y 4 / ( 4 R 1 3 ) + ( M y ) 4 / ( 4 R 3 3 ) = ( 1 + | M | ) y 4 / ( 4 R 1 3 ) .
σ max Δ z = ( 1 + | M | ) σ max ( y max 3 y min 3 )   shear / R 1 3 ,
Eff = 2 I peak N xpix N ypix / ( 2 I 1 I 2 ) ,
Eff max = | sinc ( Σ x / N xpix )   sinc ( Σ y / N ypix ) | ,

Metrics