Abstract

By introducing the notion of wavelength- and angle-averaged absorptance, we assess in a systematic way the possibility of achieving wide-angle absorptance in a spectral range. We determine the optimum thicknesses for which this broadband wide-angle absorption occurs for a representative example of infrared detector.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Wolfe and P. W. Kruse, “Thermal detectors,” in OSA Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), Vol. I, Chap. 20.
  2. D. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C. L. Britton, S. V. Patel, T. E. Mlsna, D. McCorkle, and B. Warmack, “Design and performance of a microcantilever-based hydrogen sensor,” Sens. Actuators B 88, 120-131 (2003).
    [CrossRef]
  3. E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors (Wiley, 1984).
  4. A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686-1689 (1988).
    [CrossRef]
  5. A. Hadni and X. Gerbaux, “Infrared and millimeter wave absorber structures for thermal detectors,” Infrared Phys. 30, 465-478 (1990).
    [CrossRef]
  6. S. Bauer, S. Bauer-Gogonea, and B. Ploss, “The physics of pyroelectric infrared devices,” Appl. Phys. B 54, 544-551(1992).
    [CrossRef]
  7. M. C. Larson, B. Pezeshki, and J. S. Harris, “Vertical coupled-cavity microinterferometer on GaAs with deformable-membrane top mirror,” IEEE Photonics Technol. Lett. 7, 382-384 (1995).
    [CrossRef]
  8. S. R. Manalis, “Two-dimensional micromechanical bimorph arrays for detection of thermal radiation,” Appl. Phys. Lett. 70, 3311-3313 (1997).
    [CrossRef]
  9. G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumda, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19, 856-860 (2001).
    [CrossRef] [PubMed]
  10. J. Numus, H. Botmer, C. Kunzel, U. Vetter, A. Lambrecht, J. Schumann, and F. Volklein, “Thin film based thermoelectric energy conversion systems,” Twenty First International Conference on Thermoelectrics (IEEE, 2002), pp. 523-527.
  11. P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1138 (2004).
    [CrossRef]
  12. Y. Wang, B. J. Potter, and J. J. Talghader, “Coupled absorption filters for thermal detectors,” Opt. Lett. 31, 1945-1947(2006).
    [CrossRef] [PubMed]
  13. A complete and updated list of publications can be found in J. P. Dowling, “Photonic and sonic bandgap bibliography,” http://baton.phys.lsu.edu/ jdowling/pbgbib.html.
  14. A. G. Barriuso, J. J. Monzón, L. L. Sánchez-Soto, and A. Felipe, “Comparing omnidirectional reflection from periodic and quasiperiodic photonic crystals,” Opt. Express 13, 3913-3920(2005).
    [CrossRef] [PubMed]
  15. A. G. Barriuso, J. J. Monzón, L. L. Sánchez-Soto, and A. Felipe, “Integral merit function for broadband omnidirectional mirrors,” Appl. Opt. 46, 2903-2906 (2007).
    [CrossRef] [PubMed]
  16. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  17. J. J. Monzón and L. L. Sánchez-Soto, “On the definition of absorption for a Fabry-Perot interferometer,” Pure Appl. Opt. 1, 219-222 (1992).
    [CrossRef]
  18. J. J. Monzón and L. L. Sánchez-Soto, “Optical performance of absorber structures for thermal detectors,” Appl. Opt. 33, 5137-5141 (1994).
    [CrossRef] [PubMed]
  19. Handbook of Optical Constants of Solids, E. Palik, ed. (Academic, 1998).
  20. J. A. Dobrowolski, F. C. Ho, A. Belkind, and V. A. Koss, “Merit functions for more effective thin film calculations,” Appl. Opt. 28, 2824-2831 (1989).
    [CrossRef] [PubMed]

2007

2006

2005

2004

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1138 (2004).
[CrossRef]

2003

D. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C. L. Britton, S. V. Patel, T. E. Mlsna, D. McCorkle, and B. Warmack, “Design and performance of a microcantilever-based hydrogen sensor,” Sens. Actuators B 88, 120-131 (2003).
[CrossRef]

2001

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumda, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19, 856-860 (2001).
[CrossRef] [PubMed]

1997

S. R. Manalis, “Two-dimensional micromechanical bimorph arrays for detection of thermal radiation,” Appl. Phys. Lett. 70, 3311-3313 (1997).
[CrossRef]

1995

M. C. Larson, B. Pezeshki, and J. S. Harris, “Vertical coupled-cavity microinterferometer on GaAs with deformable-membrane top mirror,” IEEE Photonics Technol. Lett. 7, 382-384 (1995).
[CrossRef]

1994

1992

J. J. Monzón and L. L. Sánchez-Soto, “On the definition of absorption for a Fabry-Perot interferometer,” Pure Appl. Opt. 1, 219-222 (1992).
[CrossRef]

S. Bauer, S. Bauer-Gogonea, and B. Ploss, “The physics of pyroelectric infrared devices,” Appl. Phys. B 54, 544-551(1992).
[CrossRef]

1990

A. Hadni and X. Gerbaux, “Infrared and millimeter wave absorber structures for thermal detectors,” Infrared Phys. 30, 465-478 (1990).
[CrossRef]

1989

1988

A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686-1689 (1988).
[CrossRef]

Barriuso, A. G.

Baselt, D.

D. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C. L. Britton, S. V. Patel, T. E. Mlsna, D. McCorkle, and B. Warmack, “Design and performance of a microcantilever-based hydrogen sensor,” Sens. Actuators B 88, 120-131 (2003).
[CrossRef]

Bauer, S.

S. Bauer, S. Bauer-Gogonea, and B. Ploss, “The physics of pyroelectric infrared devices,” Appl. Phys. B 54, 544-551(1992).
[CrossRef]

Bauer-Gogonea, S.

S. Bauer, S. Bauer-Gogonea, and B. Ploss, “The physics of pyroelectric infrared devices,” Appl. Phys. B 54, 544-551(1992).
[CrossRef]

Belkind, A.

Botmer, H.

J. Numus, H. Botmer, C. Kunzel, U. Vetter, A. Lambrecht, J. Schumann, and F. Volklein, “Thin film based thermoelectric energy conversion systems,” Twenty First International Conference on Thermoelectrics (IEEE, 2002), pp. 523-527.

Britton, C. L.

D. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C. L. Britton, S. V. Patel, T. E. Mlsna, D. McCorkle, and B. Warmack, “Design and performance of a microcantilever-based hydrogen sensor,” Sens. Actuators B 88, 120-131 (2003).
[CrossRef]

Cemalovic, S.

D. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C. L. Britton, S. V. Patel, T. E. Mlsna, D. McCorkle, and B. Warmack, “Design and performance of a microcantilever-based hydrogen sensor,” Sens. Actuators B 88, 120-131 (2003).
[CrossRef]

Cote, R. J.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumda, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19, 856-860 (2001).
[CrossRef] [PubMed]

Crowe, D. G.

E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors (Wiley, 1984).

Datar, R. H.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumda, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19, 856-860 (2001).
[CrossRef] [PubMed]

Datskos, P. G.

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1138 (2004).
[CrossRef]

Dereniak, E. L.

E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors (Wiley, 1984).

Dobrowolski, J. A.

Dowling, J. P.

A complete and updated list of publications can be found in J. P. Dowling, “Photonic and sonic bandgap bibliography,” http://baton.phys.lsu.edu/ jdowling/pbgbib.html.

Felipe, A.

Fruhberger, B.

D. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C. L. Britton, S. V. Patel, T. E. Mlsna, D. McCorkle, and B. Warmack, “Design and performance of a microcantilever-based hydrogen sensor,” Sens. Actuators B 88, 120-131 (2003).
[CrossRef]

Gerbaux, X.

A. Hadni and X. Gerbaux, “Infrared and millimeter wave absorber structures for thermal detectors,” Infrared Phys. 30, 465-478 (1990).
[CrossRef]

Hadni, A.

A. Hadni and X. Gerbaux, “Infrared and millimeter wave absorber structures for thermal detectors,” Infrared Phys. 30, 465-478 (1990).
[CrossRef]

Hansen, K. M.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumda, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19, 856-860 (2001).
[CrossRef] [PubMed]

Harris, J. S.

M. C. Larson, B. Pezeshki, and J. S. Harris, “Vertical coupled-cavity microinterferometer on GaAs with deformable-membrane top mirror,” IEEE Photonics Technol. Lett. 7, 382-384 (1995).
[CrossRef]

Ho, F. C.

Klaassen, E.

D. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C. L. Britton, S. V. Patel, T. E. Mlsna, D. McCorkle, and B. Warmack, “Design and performance of a microcantilever-based hydrogen sensor,” Sens. Actuators B 88, 120-131 (2003).
[CrossRef]

Koss, V. A.

Kruse, P. W.

W. L. Wolfe and P. W. Kruse, “Thermal detectors,” in OSA Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), Vol. I, Chap. 20.

Kunzel, C.

J. Numus, H. Botmer, C. Kunzel, U. Vetter, A. Lambrecht, J. Schumann, and F. Volklein, “Thin film based thermoelectric energy conversion systems,” Twenty First International Conference on Thermoelectrics (IEEE, 2002), pp. 523-527.

Lambrecht, A.

J. Numus, H. Botmer, C. Kunzel, U. Vetter, A. Lambrecht, J. Schumann, and F. Volklein, “Thin film based thermoelectric energy conversion systems,” Twenty First International Conference on Thermoelectrics (IEEE, 2002), pp. 523-527.

Larson, M. C.

M. C. Larson, B. Pezeshki, and J. S. Harris, “Vertical coupled-cavity microinterferometer on GaAs with deformable-membrane top mirror,” IEEE Photonics Technol. Lett. 7, 382-384 (1995).
[CrossRef]

Lavrik, N. V.

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1138 (2004).
[CrossRef]

Majumda, A.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumda, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19, 856-860 (2001).
[CrossRef] [PubMed]

Manalis, S. R.

S. R. Manalis, “Two-dimensional micromechanical bimorph arrays for detection of thermal radiation,” Appl. Phys. Lett. 70, 3311-3313 (1997).
[CrossRef]

McCorkle, D.

D. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C. L. Britton, S. V. Patel, T. E. Mlsna, D. McCorkle, and B. Warmack, “Design and performance of a microcantilever-based hydrogen sensor,” Sens. Actuators B 88, 120-131 (2003).
[CrossRef]

Mlsna, T. E.

D. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C. L. Britton, S. V. Patel, T. E. Mlsna, D. McCorkle, and B. Warmack, “Design and performance of a microcantilever-based hydrogen sensor,” Sens. Actuators B 88, 120-131 (2003).
[CrossRef]

Monzón, J. J.

Numus, J.

J. Numus, H. Botmer, C. Kunzel, U. Vetter, A. Lambrecht, J. Schumann, and F. Volklein, “Thin film based thermoelectric energy conversion systems,” Twenty First International Conference on Thermoelectrics (IEEE, 2002), pp. 523-527.

Parsons, A. D.

A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686-1689 (1988).
[CrossRef]

Patel, S. V.

D. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C. L. Britton, S. V. Patel, T. E. Mlsna, D. McCorkle, and B. Warmack, “Design and performance of a microcantilever-based hydrogen sensor,” Sens. Actuators B 88, 120-131 (2003).
[CrossRef]

Pedder, D. J.

A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686-1689 (1988).
[CrossRef]

Pezeshki, B.

M. C. Larson, B. Pezeshki, and J. S. Harris, “Vertical coupled-cavity microinterferometer on GaAs with deformable-membrane top mirror,” IEEE Photonics Technol. Lett. 7, 382-384 (1995).
[CrossRef]

Ploss, B.

S. Bauer, S. Bauer-Gogonea, and B. Ploss, “The physics of pyroelectric infrared devices,” Appl. Phys. B 54, 544-551(1992).
[CrossRef]

Potter, B. J.

Rajic, S.

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1138 (2004).
[CrossRef]

Sánchez-Soto, L. L.

Schumann, J.

J. Numus, H. Botmer, C. Kunzel, U. Vetter, A. Lambrecht, J. Schumann, and F. Volklein, “Thin film based thermoelectric energy conversion systems,” Twenty First International Conference on Thermoelectrics (IEEE, 2002), pp. 523-527.

Talghader, J. J.

Thundat, T.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumda, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19, 856-860 (2001).
[CrossRef] [PubMed]

Vetter, U.

J. Numus, H. Botmer, C. Kunzel, U. Vetter, A. Lambrecht, J. Schumann, and F. Volklein, “Thin film based thermoelectric energy conversion systems,” Twenty First International Conference on Thermoelectrics (IEEE, 2002), pp. 523-527.

Volklein, F.

J. Numus, H. Botmer, C. Kunzel, U. Vetter, A. Lambrecht, J. Schumann, and F. Volklein, “Thin film based thermoelectric energy conversion systems,” Twenty First International Conference on Thermoelectrics (IEEE, 2002), pp. 523-527.

Wang, Y.

Warmack, B.

D. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C. L. Britton, S. V. Patel, T. E. Mlsna, D. McCorkle, and B. Warmack, “Design and performance of a microcantilever-based hydrogen sensor,” Sens. Actuators B 88, 120-131 (2003).
[CrossRef]

Wolfe, W. L.

W. L. Wolfe and P. W. Kruse, “Thermal detectors,” in OSA Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), Vol. I, Chap. 20.

Wu, G.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumda, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19, 856-860 (2001).
[CrossRef] [PubMed]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

Appl. Opt.

Appl. Phys. B

S. Bauer, S. Bauer-Gogonea, and B. Ploss, “The physics of pyroelectric infrared devices,” Appl. Phys. B 54, 544-551(1992).
[CrossRef]

Appl. Phys. Lett.

S. R. Manalis, “Two-dimensional micromechanical bimorph arrays for detection of thermal radiation,” Appl. Phys. Lett. 70, 3311-3313 (1997).
[CrossRef]

IEEE Photonics Technol. Lett.

M. C. Larson, B. Pezeshki, and J. S. Harris, “Vertical coupled-cavity microinterferometer on GaAs with deformable-membrane top mirror,” IEEE Photonics Technol. Lett. 7, 382-384 (1995).
[CrossRef]

Infrared Phys.

A. Hadni and X. Gerbaux, “Infrared and millimeter wave absorber structures for thermal detectors,” Infrared Phys. 30, 465-478 (1990).
[CrossRef]

J. Vac. Sci. Technol. A

A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686-1689 (1988).
[CrossRef]

Nat. Biotechnol.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumda, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19, 856-860 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Pure Appl. Opt.

J. J. Monzón and L. L. Sánchez-Soto, “On the definition of absorption for a Fabry-Perot interferometer,” Pure Appl. Opt. 1, 219-222 (1992).
[CrossRef]

Rev. Sci. Instrum.

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1138 (2004).
[CrossRef]

Sens. Actuators B

D. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C. L. Britton, S. V. Patel, T. E. Mlsna, D. McCorkle, and B. Warmack, “Design and performance of a microcantilever-based hydrogen sensor,” Sens. Actuators B 88, 120-131 (2003).
[CrossRef]

Other

E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors (Wiley, 1984).

W. L. Wolfe and P. W. Kruse, “Thermal detectors,” in OSA Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), Vol. I, Chap. 20.

J. Numus, H. Botmer, C. Kunzel, U. Vetter, A. Lambrecht, J. Schumann, and F. Volklein, “Thin film based thermoelectric energy conversion systems,” Twenty First International Conference on Thermoelectrics (IEEE, 2002), pp. 523-527.

A complete and updated list of publications can be found in J. P. Dowling, “Photonic and sonic bandgap bibliography,” http://baton.phys.lsu.edu/ jdowling/pbgbib.html.

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

Handbook of Optical Constants of Solids, E. Palik, ed. (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of the thin-film IR thermal absorber considered in the text. The materials and thicknesses of the layers are indicated in Table 1, and the semi-infinite substrate is made of silicon.

Fig. 2
Fig. 2

Optical constants n (in red/dark gray) and κ (in yellow/light gray) for Au (circles) and Cr (triangles) in the spectral range considered in this work.

Fig. 3
Fig. 3

Absorptance A as a function of the wavelength (in the interval between 7 μm and 10 μm ) and the angle of incidence (between 0 and 75 ° ) for the optimum thicknesses in Table 1, in the case of Δ θ = 75 ° . At the bottom plane, we show the contour plots corresponding to absorptances 0.99 and 0.95.

Fig. 4
Fig. 4

Plot of the absorptance A as a function of the angle of incidence (between 0 and 75 ° ) for the same system as in Fig. 3 and the five values of the wavelength indicated in the inset.

Tables (1)

Tables Icon

Table 1 Optimum Thicknesses ( μm ) and Associated Values of the Averaged Absorptances for the System Sketched in Fig. 1 for Different Values of the Aperture Angle Δ θ

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

M = j = 1 m M j M sub ,
M j = 1 T j ( 1 R j R j T j 2 R j 2 ) .
R j = r 0 j [ 1 exp ( i 2 β j ) ] 1 r 0 j 2 exp ( i 2 β j ) , T j = ( 1 r 0 j 2 ) exp ( i β j ) 1 r 0 j 2 exp ( i 2 β j ) .
M sub = 1 t sub ( 1 r sub r sub 1 ) ,
R = | R | 2 , T = N sub cos θ sub cos θ | T | 2 ,
A = 1 R T .
A ¯ ( Δ θ , Δ λ ) = 1 Δ λ λ λ + ( 1 Δ θ θ θ + A d θ ) d λ ,
A top = 1 R cos θ N sub cos θ sub ( 1 | R bottom | 2 | T bottom | 2 ) T , A bottom = cos θ N sub cos θ sub ( 1 | R bottom | 2 | T bottom | 2 ) T T ,
A = A top + A bottom ,
MF = λ λ + W ( λ ) D 2 ( λ ) d λ ,

Metrics