Abstract

We show that a metal-dielectric Fabry–Perot (FP) structure can exhibit an omnidirectional transmission for p-polarized light, which means a passband is independent of the incidence angle of light. The omnidirectional passband occurs when the sum of the reflection phase shift at the metal–spacer interface and the propagation shift in the spacer region is almost 2π for every incidence angle. We numerically and experimentally demonstrate such an omnidirectional narrow bandpass filter in an air/Ag/ZnS/Ag/glass structure. Moreover, we introduce an antireflection coating on both sides of the metal-dielectric FP structure. The transmittance will increase obviously, while the omnidirectional property remains the same.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Lee, S. H. Chen, C. C. Kuo, and C. Y. Wei, “Achievement of arbitrary bandwidth of a narrow bandpass filter,” Opt. Express 15, 15228-15233 (2007).
    [CrossRef] [PubMed]
  2. R. R. Willey, “Achieving narrow bandpass filters which meet the requirements for DWDM,” Thin Solid Films 398, 1-9(2001).
    [CrossRef]
  3. N. D. Finkelstein, W. R. Lempert, and R. B. Miles, “Narrow-linewidth passband filter for ultraviolet rotational Raman imaging,” Opt. Lett. 22, 537-539 (1997).
    [CrossRef] [PubMed]
  4. H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, 2001).
    [CrossRef]
  5. S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26, 584-586(2001).
    [CrossRef]
  6. A.-L. Fehrembach, A. Talneau, O. Boyko, F. Lemarchand, and A. Sentenac, “Experimental demonstration of a narrowband, angular tolerant, polarization independent, doubly periodic resonant grating filter,” Opt. Lett. 32, 2269-2271 (2007).
    [CrossRef] [PubMed]
  7. A. Frenkel and C. Lin, “Multiple angle-tuned etalon filters for optical channel selection in wavelength-division multiplexed and optical frequency-division multiplexed direct-detection transmission systems,” Opt. Lett. 13, 684-686 (1988).
    [CrossRef] [PubMed]
  8. G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. , 11, 815-827 (2002).
    [CrossRef]
  9. Y. Yoon, D. Jang, J. Kim, Y. Eo, and F. Rhee, “Transmission spectra of Fabry-Perot etalon filter for diverged input beams,” IEEE Photon. Technol. Lett. 14, 1315-1317 (2002).
    [CrossRef]
  10. A. Piegari, J. Bulir, and K. Sytchkova, “Variable narrowband transmission filters with a wide rejection band for spectrometry from space. 2. Fabrication process,” Appl. Opt. 47, C151-C156 (2008).
    [CrossRef] [PubMed]
  11. V. Kochergin, Omnidirectional Optical Filters (Kluwer Academic, 2003).
  12. E. Yablonovitch, “Engineered omnidirectional external-reflectivity specta from one-dimensional layered interference filters,” Opt. Lett. 23, 1648-1649 (1998).
    [CrossRef]
  13. P. Han and H. Z. Wang, “Criterion of omnidirectional reflection in a one-dimensional photonic heterostructure,” J. Opt. Soc. Am. B 22, 1571-1575 (2005).
    [CrossRef]
  14. H. Shin, M. F. Yanik, S. H. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84, 4421-4423 (2004).
    [CrossRef]
  15. J. Liu and M. L. Brongersma, “Omnidirectional light emission via surface plasmon polaritons,” Appl. Phys. Lett. 90, 091116 (2007).
    [CrossRef]
  16. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539-554 (1969).
    [CrossRef]
  17. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  18. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  19. P. H. Berning and A. F. Turner, “Induced transmission in absorbing films applied to band pass filter design,” J. Opt. Soc. Am. 47, 230-239 (1957).
    [CrossRef]
  20. M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676-1678 (1998).
    [CrossRef]

2008 (1)

2007 (3)

2005 (1)

2004 (1)

H. Shin, M. F. Yanik, S. H. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84, 4421-4423 (2004).
[CrossRef]

2002 (2)

G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. , 11, 815-827 (2002).
[CrossRef]

Y. Yoon, D. Jang, J. Kim, Y. Eo, and F. Rhee, “Transmission spectra of Fabry-Perot etalon filter for diverged input beams,” IEEE Photon. Technol. Lett. 14, 1315-1317 (2002).
[CrossRef]

2001 (2)

R. R. Willey, “Achieving narrow bandpass filters which meet the requirements for DWDM,” Thin Solid Films 398, 1-9(2001).
[CrossRef]

S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26, 584-586(2001).
[CrossRef]

1998 (2)

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

E. Yablonovitch, “Engineered omnidirectional external-reflectivity specta from one-dimensional layered interference filters,” Opt. Lett. 23, 1648-1649 (1998).
[CrossRef]

1997 (1)

1988 (1)

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539-554 (1969).
[CrossRef]

1957 (1)

Berning, P. H.

Bloemer, M. J.

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Boyko, O.

Brongersma, M. L.

J. Liu and M. L. Brongersma, “Omnidirectional light emission via surface plasmon polaritons,” Appl. Phys. Lett. 90, 091116 (2007).
[CrossRef]

H. Shin, M. F. Yanik, S. H. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84, 4421-4423 (2004).
[CrossRef]

Bulir, J.

Chen, S. H.

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539-554 (1969).
[CrossRef]

Eo, Y.

Y. Yoon, D. Jang, J. Kim, Y. Eo, and F. Rhee, “Transmission spectra of Fabry-Perot etalon filter for diverged input beams,” IEEE Photon. Technol. Lett. 14, 1315-1317 (2002).
[CrossRef]

Fan, S. H.

H. Shin, M. F. Yanik, S. H. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84, 4421-4423 (2004).
[CrossRef]

Fehrembach, A.-L.

Finkelstein, N. D.

Frenkel, A.

Han, P.

Jang, D.

Y. Yoon, D. Jang, J. Kim, Y. Eo, and F. Rhee, “Transmission spectra of Fabry-Perot etalon filter for diverged input beams,” IEEE Photon. Technol. Lett. 14, 1315-1317 (2002).
[CrossRef]

Kim, J.

Y. Yoon, D. Jang, J. Kim, Y. Eo, and F. Rhee, “Transmission spectra of Fabry-Perot etalon filter for diverged input beams,” IEEE Photon. Technol. Lett. 14, 1315-1317 (2002).
[CrossRef]

Kochergin, V.

V. Kochergin, Omnidirectional Optical Filters (Kluwer Academic, 2003).

Kuo, C. C.

Lammel, G.

G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. , 11, 815-827 (2002).
[CrossRef]

Lee, C. C.

Lemarchand, F.

Lempert, W. R.

Lin, C.

Liu, J.

J. Liu and M. L. Brongersma, “Omnidirectional light emission via surface plasmon polaritons,” Appl. Phys. Lett. 90, 091116 (2007).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, 2001).
[CrossRef]

Magnusson, R.

Miles, R. B.

Piegari, A.

Renaud, P.

G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. , 11, 815-827 (2002).
[CrossRef]

Rhee, F.

Y. Yoon, D. Jang, J. Kim, Y. Eo, and F. Rhee, “Transmission spectra of Fabry-Perot etalon filter for diverged input beams,” IEEE Photon. Technol. Lett. 14, 1315-1317 (2002).
[CrossRef]

Scalora, M.

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

Schiesser, S.

G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. , 11, 815-827 (2002).
[CrossRef]

Schweizer, S.

G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. , 11, 815-827 (2002).
[CrossRef]

Sentenac, A.

Shin, H.

H. Shin, M. F. Yanik, S. H. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84, 4421-4423 (2004).
[CrossRef]

Sytchkova, K.

Talneau, A.

Tibuleac, S.

Turner, A. F.

Wang, H. Z.

Wei, C. Y.

Willey, R. R.

R. R. Willey, “Achieving narrow bandpass filters which meet the requirements for DWDM,” Thin Solid Films 398, 1-9(2001).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Yablonovitch, E.

Yanik, M. F.

H. Shin, M. F. Yanik, S. H. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84, 4421-4423 (2004).
[CrossRef]

Yoon, Y.

Y. Yoon, D. Jang, J. Kim, Y. Eo, and F. Rhee, “Transmission spectra of Fabry-Perot etalon filter for diverged input beams,” IEEE Photon. Technol. Lett. 14, 1315-1317 (2002).
[CrossRef]

Zia, R.

H. Shin, M. F. Yanik, S. H. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84, 4421-4423 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

H. Shin, M. F. Yanik, S. H. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84, 4421-4423 (2004).
[CrossRef]

J. Liu and M. L. Brongersma, “Omnidirectional light emission via surface plasmon polaritons,” Appl. Phys. Lett. 90, 091116 (2007).
[CrossRef]

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Yoon, D. Jang, J. Kim, Y. Eo, and F. Rhee, “Transmission spectra of Fabry-Perot etalon filter for diverged input beams,” IEEE Photon. Technol. Lett. 14, 1315-1317 (2002).
[CrossRef]

J. Microelectromech. Syst. (1)

G. Lammel, S. Schweizer, S. Schiesser, and P. Renaud, “Tunable optical filter of porous silicon as key component for a MEMS spectrometer,” J. Microelectromech. Syst. , 11, 815-827 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539-554 (1969).
[CrossRef]

Thin Solid Films (1)

R. R. Willey, “Achieving narrow bandpass filters which meet the requirements for DWDM,” Thin Solid Films 398, 1-9(2001).
[CrossRef]

Other (4)

H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, 2001).
[CrossRef]

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

V. Kochergin, Omnidirectional Optical Filters (Kluwer Academic, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Geometry of the metal-dielectric FP structure. φ 1 and φ 2 are the reflection phase shift at the two metal–spacer interfaces, respectively, and n d is the optical thickness of the spacer layer.

Fig. 2
Fig. 2

Dispersion relation of a MDM structure: the dielectric region is air and the thickness is λ s p / 4 . The frequency and the wave vector are normalized with respect to ω p and k p , where k p = ω p / c ; c is the speed of light in the air. The dashed line is the light line of air. The black solid curves represent the modes that are confined in the dielectric region.

Fig. 3
Fig. 3

Round-trip phase shift in the realistic air/Ag/ZnS/Ag/glass structure at λ = 474 nm as a function of incidence angle. The dotted curve shows the aggregate reflection phase shift at the two Ag/ZnS interfaces and the dashed curve shows the propagation phase shift in the direction normal to the interface in the dielectric layer. The total round-trip phase shift is represented by the solid curve.

Fig. 4
Fig. 4

Simulated transmittance curves of (a) an omnidirectional FP filter and (b) with an AR coating.

Fig. 5
Fig. 5

Measured results of transmittance for the same structure as in Fig. 4.

Tables (2)

Tables Icon

Table 1 Optical Constants of ZnS Used in the Calculation

Tables Icon

Table 2 Peak Transmittance and FWHM for an Ominidirectional FP Filter and a Filter with AR Coating on Different Thicknesses of Metal

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε dielectric = - ε metal .
d dielectric = λ s p 4 ε dielectric ,
d dielectric = λ s p 4 ε dielectric
φ 1 + φ 2 + 4 π nd cos θ / λ = 2 m π , m = 0 , ± 1 , ± 2 , ... ,

Metrics