Abstract

The Fourier Transform Ultraviolet Spectrometer (FTUVS) instrument has recorded a long-term data record of the atmospheric column abundance of the hydroxyl radical (OH) using the technique of high resolution solar absorption spectroscopy. We report new efforts in improving the precision of the OH measurements in order to better model the diurnal, seasonal, and interannual variability of odd hydrogen (HOx) chemistry in the stratosphere, which, in turn, will improve our understanding of ozone chemistry and its long-term changes. Until the present, the retrieval method has used a single strong OH absorption line P1(1) in the near-ultraviolet at 32,341cm1. We describe a new method that uses an average based on spectral fits to multiple lines weighted by line strength and fitting precision. We have also made a number of improvements in the ability to fit a model to the spectral feature, which substantially reduces the scatter in the measurements of OH abundances.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Müller, and R. J. Salawitch, “Upper stratospheric processes,” in Scientific Assessment of Ozone Depletion: 1998, D. L. Albritton, ed. (World Meteorological Organization, 1999), pp. 6.1-6.44.
  2. F. P. Mills, R. P. Cageao, S. P. Sander, M. Allen, Y. L. Yung, E. E. Remsberg, J. M. Russell III, and U. Richter, “OH column abundance over Table Mountain Facility, California: intra-annual variations and comparisons to model predictions for 1997-2001,” J. Geophys. Res. 1084785 (2003).
    [CrossRef]
  3. S. Wang, H. M. Pickett, T. J. Pongetti, R. Cheung, Y. L. Yung, C. Shim, Q. Li, T. Canty, R. J. Salawitch, K. W. Jucks, B. Drouin, and S. P. Sander, “Validation of aura MLS OH measurement with FTUVS total OH column measurement at TMF, California,” J. Geophys. Res. (to be published).
    [PubMed]
  4. H. M. Pickett and D. B. Peterson, “Comparison of measured stratospheric OH with prediction,” J. Geophys. Res. 101, 16789-16796 (1996).
    [CrossRef]
  5. J. G. Anderson, “Rocket measurement of OH in the mesosphere,” J. Geophys. Res. 76, 7820-7824 (1971).
    [CrossRef]
  6. W. S. Heaps and T. J. McGee, “Progress in stratospheric hydroxyl measurement by balloon-borne LIDAR,” J. Geophys. Res. 90, 7913-7921 (1985).
    [CrossRef]
  7. R. M. Stimpfle and J. G. Anderson, “In situ detection of OH in the lower stratosphere with a balloon borne high repetition rate laser system,” Geophys. Res. Lett. 15, 1503-1506 (1988).
    [CrossRef]
  8. R. M. Stimpfle, P. O. Wennberg, L. B. Lapson, and J. G. Anderson, “Simultaneous, in situ measurements of OH and HO2 in the stratosphere,” Geophys. Res. Lett. 17, 1905-1908 (1990).
    [CrossRef]
  9. P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, and J. G. Anderson, “Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858-76 (1994).
    [CrossRef]
  10. P. O. Wennberg, T. F. Hanisco, R. C. Cohen, R. M. Stimpfle, L. B. Lapson, and J. G. Anderson, “In situ measurements of OH and HO2 in the upper troposphere and stratosphere,” J. Atmos. Sci. 19, 3412-3420 (1995).
  11. I. C. Faloona, D. Tan, R. L. Lesher, N. L. Hazen, C. L. Frame, J. B. Simpas, H. Harder, M. Martinez, P. Di Carlo, X. Ren, and W. H. Brune, “Laser-induced fluorescence instrument for detecting tropospheric OH and HO2: characteristics and calibration,” J. Atmos. Chem. 47, 139-167 (2004).
    [CrossRef]
  12. W. J. Bloss, T. J. Gravestock, D. E. Heard, T. Ingham, G. P. Johnson, and J. D. Lee, “Application of a compact all solid-state laser system to the in situ detection of atmospheric OH, HO2, NO, and IO by laser-induced fluorescence,” J. Environ. Monitor. 5, 21-28 (2003).
    [CrossRef]
  13. H. Berresheim, T. Elste, C. Plass-Dulmer, F. L. Eisele, and D. J. Tanner, “Chemical ionization mass spectrometer for long-term measurement of atmospheric OH and HO2SO4,” Int. J. Mass Spectrom. 202(1-3), 91-109 (2000).
    [CrossRef]
  14. G. H. Mount, “The measurement of tropospheric OH by long path absorption 1. Instrumentation,”J. Geophys. Res. 97, 2427 (1992).
    [CrossRef]
  15. J. H. Park and B. Carli, “Spectroscopic measurement of HO2, H2O2, and OH in the stratosphere,” J. Geophys. Res. 96, 22535-22541 (1991).
    [CrossRef]
  16. D. G. Johnson, K. W. Jucks, W. A. Traub, and K. V. Chance, “Smithsonian stratospheric far-infrared spectrometer and data reduction system,” J. Geophys. Res 100, 3091-3106(1995).
    [CrossRef]
  17. H. M. Pickett and D. B. Peterson, “Stratospheric OH measurements with a far-infrared limb observing spectrometer,” J. Geophys. Res. Atmos. 98, 20507-20515 (1993).
    [CrossRef]
  18. R. R. Conway, M. H. Stevens, J. G. Cardon, S. E. Zasadil, C. M. Brown, J. S. Morrill, and G. H. Mount, “Satellite measurements of hydroxyl in the mesosphere,” Geophys. Res. Lett. 23, 2093-2096 (1996).
    [CrossRef]
  19. R. R. Conway, M. H. Stevens, C. M. Brown, J. G. Cardon, S. E. Zasadil, and G. H. Mount, “Middle Atmosphere High Resolution Spectrograph Investigation,” J. Geophys. Res. 104, 16327-16348 (1999).
    [CrossRef]
  20. C. R. Burnett and E. B. Burnett, “The regime of decreased OH vertical column abundances at Fritz Peak Observatory, CO: 1991-1995,” Geophys. Res. Lett. 23, 1925-1927 (1996).
    [CrossRef]
  21. N. Iwagami, S. Inomata, and T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere: 2. Measurement for three years and comparison with a 1D model,” J. Atmos. Chem. 29, 195-216 (1998).
    [CrossRef]
  22. C. R. Burnett and K. Minschwaner, “Continuing development in the regime of decreased atmospheric column OH at Fritz Peak, Colorado,” Geophys. Res. Lett. 25, 1313-1316 (1998).
    [CrossRef]
  23. T. Canty, K. Minschwaner, K. W. Jucks, and A. K. Smith, “A review of hydroxyl in the middle atmosphere: comparison of measured and modeled vertical profiles and ground-based column observations,” in Vol. 123 of Atmospheric Sciences Across the Stratopause, Geophysical Monograph Series, E. Siskind, S. D. Eckermann, and M. E. Summers, eds. (American Geophysical Union, 2000), pp. 131-136.
    [CrossRef]
  24. R. P. Cageao, J. F. Blavier, J. P. McGuire, Y. Jiang, V. Nemtchinov, F. P. Mills, and S. P. Sander, “High-resolution Fourier-transform ultraviolet-visible spectrometer for the measurement of atmospheric trace species: application to OH,” Appl. Opt. 40, 2024-2030 (2001).
    [CrossRef]
  25. C. R. Burnett, K. R. Minschwaner, and E. B. Burnett, “Vertical column abundance measurements of atmospheric hydroxyl from 26 °N, 40 °N, and 65 °N,” J. Geophys. Res. 93, 5241-5253 (1988).
    [CrossRef]
  26. M. J. Prather, “Ozone in the upper stratosphere and mesosphere,” J. Geophys. Res. 86, 5325-5338 (1981).
    [CrossRef]
  27. K. F. Li, R. P. Cageao, E. M. Karpilovsky, F. P. Mills, Y. L. Yung, J. S. Margolis, and S. P. Sander, “OH column abundance over Table Mountain Facility, California: AM-PM diurnal asymmetry,” Geophys. Res. Lett. 32, L13813 (2005).
    [CrossRef]
  28. R. P. Cageao, Y. L. Ha., Y. Jiang, M. F. Morgan, Y. L. Yung, and S. P. Sander, “Calculated hydroxyl A2Σ-->X2Π (0,0) band emission rate factors applicable to atmospheric spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 57, 703-717 (1997).
    [CrossRef]
  29. R. W. Preisendorfer, Principal Component Analysis in Meteorology and Oceanography (Elsevier Science, 1988), p. 425.
  30. F. P. Mills, R. P. Cageao, V. Nemtchinov, Y. Jiang, and S. P. Sander, “OH column abundance over Table Mountain Facility, California: annual average 1997-2000,” Geophys. Res. Lett. 29, 1742 (2002),
    [CrossRef]
  31. N. Iwagami, S. Inomata, I. Murata, and T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere,” J. Atmos. Chem. 20, 1-15 (1995).
    [CrossRef]
  32. J. Notholt, H. Schutt, and A. Keens, “Solar absorption measurements of stratospheric OH in the UV with a Fourier-transform spectrometer,” Appl. Opt. 36, 6076-6082(1997).
    [CrossRef] [PubMed]
  33. C. R. Burnett and E. B. Burnett, “Spectroscopic measurements of the vertical column abundance of hydroxyl (OH) in the earth's atmosphere,” J. Geophys. Res. 86, 5185-5202(1981).
    [CrossRef]
  34. G. Stark, J. W. Brault, M. C. Abrams, “Fourier-transform spectra of the AA2Σ+-->X2Π Δv=0 bands of OH and OD,” J. Opt. Soc. Am. B 11, 3-32 (1994).
    [CrossRef]

2005 (1)

K. F. Li, R. P. Cageao, E. M. Karpilovsky, F. P. Mills, Y. L. Yung, J. S. Margolis, and S. P. Sander, “OH column abundance over Table Mountain Facility, California: AM-PM diurnal asymmetry,” Geophys. Res. Lett. 32, L13813 (2005).
[CrossRef]

2004 (1)

I. C. Faloona, D. Tan, R. L. Lesher, N. L. Hazen, C. L. Frame, J. B. Simpas, H. Harder, M. Martinez, P. Di Carlo, X. Ren, and W. H. Brune, “Laser-induced fluorescence instrument for detecting tropospheric OH and HO2: characteristics and calibration,” J. Atmos. Chem. 47, 139-167 (2004).
[CrossRef]

2003 (2)

W. J. Bloss, T. J. Gravestock, D. E. Heard, T. Ingham, G. P. Johnson, and J. D. Lee, “Application of a compact all solid-state laser system to the in situ detection of atmospheric OH, HO2, NO, and IO by laser-induced fluorescence,” J. Environ. Monitor. 5, 21-28 (2003).
[CrossRef]

F. P. Mills, R. P. Cageao, S. P. Sander, M. Allen, Y. L. Yung, E. E. Remsberg, J. M. Russell III, and U. Richter, “OH column abundance over Table Mountain Facility, California: intra-annual variations and comparisons to model predictions for 1997-2001,” J. Geophys. Res. 1084785 (2003).
[CrossRef]

2002 (1)

F. P. Mills, R. P. Cageao, V. Nemtchinov, Y. Jiang, and S. P. Sander, “OH column abundance over Table Mountain Facility, California: annual average 1997-2000,” Geophys. Res. Lett. 29, 1742 (2002),
[CrossRef]

2001 (1)

2000 (1)

H. Berresheim, T. Elste, C. Plass-Dulmer, F. L. Eisele, and D. J. Tanner, “Chemical ionization mass spectrometer for long-term measurement of atmospheric OH and HO2SO4,” Int. J. Mass Spectrom. 202(1-3), 91-109 (2000).
[CrossRef]

1999 (1)

R. R. Conway, M. H. Stevens, C. M. Brown, J. G. Cardon, S. E. Zasadil, and G. H. Mount, “Middle Atmosphere High Resolution Spectrograph Investigation,” J. Geophys. Res. 104, 16327-16348 (1999).
[CrossRef]

1998 (2)

N. Iwagami, S. Inomata, and T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere: 2. Measurement for three years and comparison with a 1D model,” J. Atmos. Chem. 29, 195-216 (1998).
[CrossRef]

C. R. Burnett and K. Minschwaner, “Continuing development in the regime of decreased atmospheric column OH at Fritz Peak, Colorado,” Geophys. Res. Lett. 25, 1313-1316 (1998).
[CrossRef]

1997 (2)

R. P. Cageao, Y. L. Ha., Y. Jiang, M. F. Morgan, Y. L. Yung, and S. P. Sander, “Calculated hydroxyl A2Σ-->X2Π (0,0) band emission rate factors applicable to atmospheric spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 57, 703-717 (1997).
[CrossRef]

J. Notholt, H. Schutt, and A. Keens, “Solar absorption measurements of stratospheric OH in the UV with a Fourier-transform spectrometer,” Appl. Opt. 36, 6076-6082(1997).
[CrossRef] [PubMed]

1996 (3)

C. R. Burnett and E. B. Burnett, “The regime of decreased OH vertical column abundances at Fritz Peak Observatory, CO: 1991-1995,” Geophys. Res. Lett. 23, 1925-1927 (1996).
[CrossRef]

R. R. Conway, M. H. Stevens, J. G. Cardon, S. E. Zasadil, C. M. Brown, J. S. Morrill, and G. H. Mount, “Satellite measurements of hydroxyl in the mesosphere,” Geophys. Res. Lett. 23, 2093-2096 (1996).
[CrossRef]

H. M. Pickett and D. B. Peterson, “Comparison of measured stratospheric OH with prediction,” J. Geophys. Res. 101, 16789-16796 (1996).
[CrossRef]

1995 (3)

P. O. Wennberg, T. F. Hanisco, R. C. Cohen, R. M. Stimpfle, L. B. Lapson, and J. G. Anderson, “In situ measurements of OH and HO2 in the upper troposphere and stratosphere,” J. Atmos. Sci. 19, 3412-3420 (1995).

D. G. Johnson, K. W. Jucks, W. A. Traub, and K. V. Chance, “Smithsonian stratospheric far-infrared spectrometer and data reduction system,” J. Geophys. Res 100, 3091-3106(1995).
[CrossRef]

N. Iwagami, S. Inomata, I. Murata, and T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere,” J. Atmos. Chem. 20, 1-15 (1995).
[CrossRef]

1994 (2)

G. Stark, J. W. Brault, M. C. Abrams, “Fourier-transform spectra of the AA2Σ+-->X2Π Δv=0 bands of OH and OD,” J. Opt. Soc. Am. B 11, 3-32 (1994).
[CrossRef]

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, and J. G. Anderson, “Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858-76 (1994).
[CrossRef]

1993 (1)

H. M. Pickett and D. B. Peterson, “Stratospheric OH measurements with a far-infrared limb observing spectrometer,” J. Geophys. Res. Atmos. 98, 20507-20515 (1993).
[CrossRef]

1992 (1)

G. H. Mount, “The measurement of tropospheric OH by long path absorption 1. Instrumentation,”J. Geophys. Res. 97, 2427 (1992).
[CrossRef]

1991 (1)

J. H. Park and B. Carli, “Spectroscopic measurement of HO2, H2O2, and OH in the stratosphere,” J. Geophys. Res. 96, 22535-22541 (1991).
[CrossRef]

1990 (1)

R. M. Stimpfle, P. O. Wennberg, L. B. Lapson, and J. G. Anderson, “Simultaneous, in situ measurements of OH and HO2 in the stratosphere,” Geophys. Res. Lett. 17, 1905-1908 (1990).
[CrossRef]

1988 (2)

R. M. Stimpfle and J. G. Anderson, “In situ detection of OH in the lower stratosphere with a balloon borne high repetition rate laser system,” Geophys. Res. Lett. 15, 1503-1506 (1988).
[CrossRef]

C. R. Burnett, K. R. Minschwaner, and E. B. Burnett, “Vertical column abundance measurements of atmospheric hydroxyl from 26 °N, 40 °N, and 65 °N,” J. Geophys. Res. 93, 5241-5253 (1988).
[CrossRef]

1985 (1)

W. S. Heaps and T. J. McGee, “Progress in stratospheric hydroxyl measurement by balloon-borne LIDAR,” J. Geophys. Res. 90, 7913-7921 (1985).
[CrossRef]

1981 (2)

M. J. Prather, “Ozone in the upper stratosphere and mesosphere,” J. Geophys. Res. 86, 5325-5338 (1981).
[CrossRef]

C. R. Burnett and E. B. Burnett, “Spectroscopic measurements of the vertical column abundance of hydroxyl (OH) in the earth's atmosphere,” J. Geophys. Res. 86, 5185-5202(1981).
[CrossRef]

1971 (1)

J. G. Anderson, “Rocket measurement of OH in the mesosphere,” J. Geophys. Res. 76, 7820-7824 (1971).
[CrossRef]

Abrams, M. C.

Allen, M.

F. P. Mills, R. P. Cageao, S. P. Sander, M. Allen, Y. L. Yung, E. E. Remsberg, J. M. Russell III, and U. Richter, “OH column abundance over Table Mountain Facility, California: intra-annual variations and comparisons to model predictions for 1997-2001,” J. Geophys. Res. 1084785 (2003).
[CrossRef]

Allen, N. T.

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, and J. G. Anderson, “Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858-76 (1994).
[CrossRef]

Anderson, J. G.

P. O. Wennberg, T. F. Hanisco, R. C. Cohen, R. M. Stimpfle, L. B. Lapson, and J. G. Anderson, “In situ measurements of OH and HO2 in the upper troposphere and stratosphere,” J. Atmos. Sci. 19, 3412-3420 (1995).

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, and J. G. Anderson, “Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858-76 (1994).
[CrossRef]

R. M. Stimpfle, P. O. Wennberg, L. B. Lapson, and J. G. Anderson, “Simultaneous, in situ measurements of OH and HO2 in the stratosphere,” Geophys. Res. Lett. 17, 1905-1908 (1990).
[CrossRef]

R. M. Stimpfle and J. G. Anderson, “In situ detection of OH in the lower stratosphere with a balloon borne high repetition rate laser system,” Geophys. Res. Lett. 15, 1503-1506 (1988).
[CrossRef]

J. G. Anderson, “Rocket measurement of OH in the mesosphere,” J. Geophys. Res. 76, 7820-7824 (1971).
[CrossRef]

Berresheim, H.

H. Berresheim, T. Elste, C. Plass-Dulmer, F. L. Eisele, and D. J. Tanner, “Chemical ionization mass spectrometer for long-term measurement of atmospheric OH and HO2SO4,” Int. J. Mass Spectrom. 202(1-3), 91-109 (2000).
[CrossRef]

Blavier, J. F.

Bloss, W. J.

W. J. Bloss, T. J. Gravestock, D. E. Heard, T. Ingham, G. P. Johnson, and J. D. Lee, “Application of a compact all solid-state laser system to the in situ detection of atmospheric OH, HO2, NO, and IO by laser-induced fluorescence,” J. Environ. Monitor. 5, 21-28 (2003).
[CrossRef]

Brault, J. W.

Brown, C. M.

R. R. Conway, M. H. Stevens, C. M. Brown, J. G. Cardon, S. E. Zasadil, and G. H. Mount, “Middle Atmosphere High Resolution Spectrograph Investigation,” J. Geophys. Res. 104, 16327-16348 (1999).
[CrossRef]

R. R. Conway, M. H. Stevens, J. G. Cardon, S. E. Zasadil, C. M. Brown, J. S. Morrill, and G. H. Mount, “Satellite measurements of hydroxyl in the mesosphere,” Geophys. Res. Lett. 23, 2093-2096 (1996).
[CrossRef]

Brune, W. H.

I. C. Faloona, D. Tan, R. L. Lesher, N. L. Hazen, C. L. Frame, J. B. Simpas, H. Harder, M. Martinez, P. Di Carlo, X. Ren, and W. H. Brune, “Laser-induced fluorescence instrument for detecting tropospheric OH and HO2: characteristics and calibration,” J. Atmos. Chem. 47, 139-167 (2004).
[CrossRef]

Burnett, C. R.

C. R. Burnett and K. Minschwaner, “Continuing development in the regime of decreased atmospheric column OH at Fritz Peak, Colorado,” Geophys. Res. Lett. 25, 1313-1316 (1998).
[CrossRef]

C. R. Burnett and E. B. Burnett, “The regime of decreased OH vertical column abundances at Fritz Peak Observatory, CO: 1991-1995,” Geophys. Res. Lett. 23, 1925-1927 (1996).
[CrossRef]

C. R. Burnett, K. R. Minschwaner, and E. B. Burnett, “Vertical column abundance measurements of atmospheric hydroxyl from 26 °N, 40 °N, and 65 °N,” J. Geophys. Res. 93, 5241-5253 (1988).
[CrossRef]

C. R. Burnett and E. B. Burnett, “Spectroscopic measurements of the vertical column abundance of hydroxyl (OH) in the earth's atmosphere,” J. Geophys. Res. 86, 5185-5202(1981).
[CrossRef]

Burnett, E. B.

C. R. Burnett and E. B. Burnett, “The regime of decreased OH vertical column abundances at Fritz Peak Observatory, CO: 1991-1995,” Geophys. Res. Lett. 23, 1925-1927 (1996).
[CrossRef]

C. R. Burnett, K. R. Minschwaner, and E. B. Burnett, “Vertical column abundance measurements of atmospheric hydroxyl from 26 °N, 40 °N, and 65 °N,” J. Geophys. Res. 93, 5241-5253 (1988).
[CrossRef]

C. R. Burnett and E. B. Burnett, “Spectroscopic measurements of the vertical column abundance of hydroxyl (OH) in the earth's atmosphere,” J. Geophys. Res. 86, 5185-5202(1981).
[CrossRef]

Cageao, R. P.

K. F. Li, R. P. Cageao, E. M. Karpilovsky, F. P. Mills, Y. L. Yung, J. S. Margolis, and S. P. Sander, “OH column abundance over Table Mountain Facility, California: AM-PM diurnal asymmetry,” Geophys. Res. Lett. 32, L13813 (2005).
[CrossRef]

F. P. Mills, R. P. Cageao, S. P. Sander, M. Allen, Y. L. Yung, E. E. Remsberg, J. M. Russell III, and U. Richter, “OH column abundance over Table Mountain Facility, California: intra-annual variations and comparisons to model predictions for 1997-2001,” J. Geophys. Res. 1084785 (2003).
[CrossRef]

F. P. Mills, R. P. Cageao, V. Nemtchinov, Y. Jiang, and S. P. Sander, “OH column abundance over Table Mountain Facility, California: annual average 1997-2000,” Geophys. Res. Lett. 29, 1742 (2002),
[CrossRef]

R. P. Cageao, J. F. Blavier, J. P. McGuire, Y. Jiang, V. Nemtchinov, F. P. Mills, and S. P. Sander, “High-resolution Fourier-transform ultraviolet-visible spectrometer for the measurement of atmospheric trace species: application to OH,” Appl. Opt. 40, 2024-2030 (2001).
[CrossRef]

R. P. Cageao, Y. L. Ha., Y. Jiang, M. F. Morgan, Y. L. Yung, and S. P. Sander, “Calculated hydroxyl A2Σ-->X2Π (0,0) band emission rate factors applicable to atmospheric spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 57, 703-717 (1997).
[CrossRef]

Canty, T.

S. Wang, H. M. Pickett, T. J. Pongetti, R. Cheung, Y. L. Yung, C. Shim, Q. Li, T. Canty, R. J. Salawitch, K. W. Jucks, B. Drouin, and S. P. Sander, “Validation of aura MLS OH measurement with FTUVS total OH column measurement at TMF, California,” J. Geophys. Res. (to be published).
[PubMed]

T. Canty, K. Minschwaner, K. W. Jucks, and A. K. Smith, “A review of hydroxyl in the middle atmosphere: comparison of measured and modeled vertical profiles and ground-based column observations,” in Vol. 123 of Atmospheric Sciences Across the Stratopause, Geophysical Monograph Series, E. Siskind, S. D. Eckermann, and M. E. Summers, eds. (American Geophysical Union, 2000), pp. 131-136.
[CrossRef]

Cardon, J. G.

R. R. Conway, M. H. Stevens, C. M. Brown, J. G. Cardon, S. E. Zasadil, and G. H. Mount, “Middle Atmosphere High Resolution Spectrograph Investigation,” J. Geophys. Res. 104, 16327-16348 (1999).
[CrossRef]

R. R. Conway, M. H. Stevens, J. G. Cardon, S. E. Zasadil, C. M. Brown, J. S. Morrill, and G. H. Mount, “Satellite measurements of hydroxyl in the mesosphere,” Geophys. Res. Lett. 23, 2093-2096 (1996).
[CrossRef]

Carli, B.

J. H. Park and B. Carli, “Spectroscopic measurement of HO2, H2O2, and OH in the stratosphere,” J. Geophys. Res. 96, 22535-22541 (1991).
[CrossRef]

Chance, K. V.

D. G. Johnson, K. W. Jucks, W. A. Traub, and K. V. Chance, “Smithsonian stratospheric far-infrared spectrometer and data reduction system,” J. Geophys. Res 100, 3091-3106(1995).
[CrossRef]

Cheung, R.

S. Wang, H. M. Pickett, T. J. Pongetti, R. Cheung, Y. L. Yung, C. Shim, Q. Li, T. Canty, R. J. Salawitch, K. W. Jucks, B. Drouin, and S. P. Sander, “Validation of aura MLS OH measurement with FTUVS total OH column measurement at TMF, California,” J. Geophys. Res. (to be published).
[PubMed]

Cohen, R. C.

P. O. Wennberg, T. F. Hanisco, R. C. Cohen, R. M. Stimpfle, L. B. Lapson, and J. G. Anderson, “In situ measurements of OH and HO2 in the upper troposphere and stratosphere,” J. Atmos. Sci. 19, 3412-3420 (1995).

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, and J. G. Anderson, “Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858-76 (1994).
[CrossRef]

Conway, R. R.

R. R. Conway, M. H. Stevens, C. M. Brown, J. G. Cardon, S. E. Zasadil, and G. H. Mount, “Middle Atmosphere High Resolution Spectrograph Investigation,” J. Geophys. Res. 104, 16327-16348 (1999).
[CrossRef]

R. R. Conway, M. H. Stevens, J. G. Cardon, S. E. Zasadil, C. M. Brown, J. S. Morrill, and G. H. Mount, “Satellite measurements of hydroxyl in the mesosphere,” Geophys. Res. Lett. 23, 2093-2096 (1996).
[CrossRef]

Demusz, J. N.

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, and J. G. Anderson, “Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858-76 (1994).
[CrossRef]

Di Carlo, P.

I. C. Faloona, D. Tan, R. L. Lesher, N. L. Hazen, C. L. Frame, J. B. Simpas, H. Harder, M. Martinez, P. Di Carlo, X. Ren, and W. H. Brune, “Laser-induced fluorescence instrument for detecting tropospheric OH and HO2: characteristics and calibration,” J. Atmos. Chem. 47, 139-167 (2004).
[CrossRef]

Drouin, B.

S. Wang, H. M. Pickett, T. J. Pongetti, R. Cheung, Y. L. Yung, C. Shim, Q. Li, T. Canty, R. J. Salawitch, K. W. Jucks, B. Drouin, and S. P. Sander, “Validation of aura MLS OH measurement with FTUVS total OH column measurement at TMF, California,” J. Geophys. Res. (to be published).
[PubMed]

Eisele, F. L.

H. Berresheim, T. Elste, C. Plass-Dulmer, F. L. Eisele, and D. J. Tanner, “Chemical ionization mass spectrometer for long-term measurement of atmospheric OH and HO2SO4,” Int. J. Mass Spectrom. 202(1-3), 91-109 (2000).
[CrossRef]

Elste, T.

H. Berresheim, T. Elste, C. Plass-Dulmer, F. L. Eisele, and D. J. Tanner, “Chemical ionization mass spectrometer for long-term measurement of atmospheric OH and HO2SO4,” Int. J. Mass Spectrom. 202(1-3), 91-109 (2000).
[CrossRef]

Faloona, I. C.

I. C. Faloona, D. Tan, R. L. Lesher, N. L. Hazen, C. L. Frame, J. B. Simpas, H. Harder, M. Martinez, P. Di Carlo, X. Ren, and W. H. Brune, “Laser-induced fluorescence instrument for detecting tropospheric OH and HO2: characteristics and calibration,” J. Atmos. Chem. 47, 139-167 (2004).
[CrossRef]

Frame, C. L.

I. C. Faloona, D. Tan, R. L. Lesher, N. L. Hazen, C. L. Frame, J. B. Simpas, H. Harder, M. Martinez, P. Di Carlo, X. Ren, and W. H. Brune, “Laser-induced fluorescence instrument for detecting tropospheric OH and HO2: characteristics and calibration,” J. Atmos. Chem. 47, 139-167 (2004).
[CrossRef]

Gravestock, T. J.

W. J. Bloss, T. J. Gravestock, D. E. Heard, T. Ingham, G. P. Johnson, and J. D. Lee, “Application of a compact all solid-state laser system to the in situ detection of atmospheric OH, HO2, NO, and IO by laser-induced fluorescence,” J. Environ. Monitor. 5, 21-28 (2003).
[CrossRef]

Ha, Y. L.

R. P. Cageao, Y. L. Ha., Y. Jiang, M. F. Morgan, Y. L. Yung, and S. P. Sander, “Calculated hydroxyl A2Σ-->X2Π (0,0) band emission rate factors applicable to atmospheric spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 57, 703-717 (1997).
[CrossRef]

Hanisco, T. F.

P. O. Wennberg, T. F. Hanisco, R. C. Cohen, R. M. Stimpfle, L. B. Lapson, and J. G. Anderson, “In situ measurements of OH and HO2 in the upper troposphere and stratosphere,” J. Atmos. Sci. 19, 3412-3420 (1995).

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, and J. G. Anderson, “Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858-76 (1994).
[CrossRef]

Harder, H.

I. C. Faloona, D. Tan, R. L. Lesher, N. L. Hazen, C. L. Frame, J. B. Simpas, H. Harder, M. Martinez, P. Di Carlo, X. Ren, and W. H. Brune, “Laser-induced fluorescence instrument for detecting tropospheric OH and HO2: characteristics and calibration,” J. Atmos. Chem. 47, 139-167 (2004).
[CrossRef]

Hazen, N. L.

I. C. Faloona, D. Tan, R. L. Lesher, N. L. Hazen, C. L. Frame, J. B. Simpas, H. Harder, M. Martinez, P. Di Carlo, X. Ren, and W. H. Brune, “Laser-induced fluorescence instrument for detecting tropospheric OH and HO2: characteristics and calibration,” J. Atmos. Chem. 47, 139-167 (2004).
[CrossRef]

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, and J. G. Anderson, “Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858-76 (1994).
[CrossRef]

Heaps, W. S.

W. S. Heaps and T. J. McGee, “Progress in stratospheric hydroxyl measurement by balloon-borne LIDAR,” J. Geophys. Res. 90, 7913-7921 (1985).
[CrossRef]

Heard, D. E.

W. J. Bloss, T. J. Gravestock, D. E. Heard, T. Ingham, G. P. Johnson, and J. D. Lee, “Application of a compact all solid-state laser system to the in situ detection of atmospheric OH, HO2, NO, and IO by laser-induced fluorescence,” J. Environ. Monitor. 5, 21-28 (2003).
[CrossRef]

Ingham, T.

W. J. Bloss, T. J. Gravestock, D. E. Heard, T. Ingham, G. P. Johnson, and J. D. Lee, “Application of a compact all solid-state laser system to the in situ detection of atmospheric OH, HO2, NO, and IO by laser-induced fluorescence,” J. Environ. Monitor. 5, 21-28 (2003).
[CrossRef]

Inomata, S.

N. Iwagami, S. Inomata, and T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere: 2. Measurement for three years and comparison with a 1D model,” J. Atmos. Chem. 29, 195-216 (1998).
[CrossRef]

N. Iwagami, S. Inomata, I. Murata, and T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere,” J. Atmos. Chem. 20, 1-15 (1995).
[CrossRef]

Iwagami, N.

N. Iwagami, S. Inomata, and T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere: 2. Measurement for three years and comparison with a 1D model,” J. Atmos. Chem. 29, 195-216 (1998).
[CrossRef]

N. Iwagami, S. Inomata, I. Murata, and T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere,” J. Atmos. Chem. 20, 1-15 (1995).
[CrossRef]

Jiang, Y.

F. P. Mills, R. P. Cageao, V. Nemtchinov, Y. Jiang, and S. P. Sander, “OH column abundance over Table Mountain Facility, California: annual average 1997-2000,” Geophys. Res. Lett. 29, 1742 (2002),
[CrossRef]

R. P. Cageao, J. F. Blavier, J. P. McGuire, Y. Jiang, V. Nemtchinov, F. P. Mills, and S. P. Sander, “High-resolution Fourier-transform ultraviolet-visible spectrometer for the measurement of atmospheric trace species: application to OH,” Appl. Opt. 40, 2024-2030 (2001).
[CrossRef]

R. P. Cageao, Y. L. Ha., Y. Jiang, M. F. Morgan, Y. L. Yung, and S. P. Sander, “Calculated hydroxyl A2Σ-->X2Π (0,0) band emission rate factors applicable to atmospheric spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 57, 703-717 (1997).
[CrossRef]

Johnson, D. G.

D. G. Johnson, K. W. Jucks, W. A. Traub, and K. V. Chance, “Smithsonian stratospheric far-infrared spectrometer and data reduction system,” J. Geophys. Res 100, 3091-3106(1995).
[CrossRef]

Johnson, G. P.

W. J. Bloss, T. J. Gravestock, D. E. Heard, T. Ingham, G. P. Johnson, and J. D. Lee, “Application of a compact all solid-state laser system to the in situ detection of atmospheric OH, HO2, NO, and IO by laser-induced fluorescence,” J. Environ. Monitor. 5, 21-28 (2003).
[CrossRef]

Jucks, K. W.

D. G. Johnson, K. W. Jucks, W. A. Traub, and K. V. Chance, “Smithsonian stratospheric far-infrared spectrometer and data reduction system,” J. Geophys. Res 100, 3091-3106(1995).
[CrossRef]

T. Canty, K. Minschwaner, K. W. Jucks, and A. K. Smith, “A review of hydroxyl in the middle atmosphere: comparison of measured and modeled vertical profiles and ground-based column observations,” in Vol. 123 of Atmospheric Sciences Across the Stratopause, Geophysical Monograph Series, E. Siskind, S. D. Eckermann, and M. E. Summers, eds. (American Geophysical Union, 2000), pp. 131-136.
[CrossRef]

S. Wang, H. M. Pickett, T. J. Pongetti, R. Cheung, Y. L. Yung, C. Shim, Q. Li, T. Canty, R. J. Salawitch, K. W. Jucks, B. Drouin, and S. P. Sander, “Validation of aura MLS OH measurement with FTUVS total OH column measurement at TMF, California,” J. Geophys. Res. (to be published).
[PubMed]

Karpilovsky, E. M.

K. F. Li, R. P. Cageao, E. M. Karpilovsky, F. P. Mills, Y. L. Yung, J. S. Margolis, and S. P. Sander, “OH column abundance over Table Mountain Facility, California: AM-PM diurnal asymmetry,” Geophys. Res. Lett. 32, L13813 (2005).
[CrossRef]

Keens, A.

Lanham, N. W.

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, and J. G. Anderson, “Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858-76 (1994).
[CrossRef]

Lapson, L. B.

P. O. Wennberg, T. F. Hanisco, R. C. Cohen, R. M. Stimpfle, L. B. Lapson, and J. G. Anderson, “In situ measurements of OH and HO2 in the upper troposphere and stratosphere,” J. Atmos. Sci. 19, 3412-3420 (1995).

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, and J. G. Anderson, “Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858-76 (1994).
[CrossRef]

R. M. Stimpfle, P. O. Wennberg, L. B. Lapson, and J. G. Anderson, “Simultaneous, in situ measurements of OH and HO2 in the stratosphere,” Geophys. Res. Lett. 17, 1905-1908 (1990).
[CrossRef]

Lee, J. D.

W. J. Bloss, T. J. Gravestock, D. E. Heard, T. Ingham, G. P. Johnson, and J. D. Lee, “Application of a compact all solid-state laser system to the in situ detection of atmospheric OH, HO2, NO, and IO by laser-induced fluorescence,” J. Environ. Monitor. 5, 21-28 (2003).
[CrossRef]

Lesher, R. L.

I. C. Faloona, D. Tan, R. L. Lesher, N. L. Hazen, C. L. Frame, J. B. Simpas, H. Harder, M. Martinez, P. Di Carlo, X. Ren, and W. H. Brune, “Laser-induced fluorescence instrument for detecting tropospheric OH and HO2: characteristics and calibration,” J. Atmos. Chem. 47, 139-167 (2004).
[CrossRef]

Li, K. F.

K. F. Li, R. P. Cageao, E. M. Karpilovsky, F. P. Mills, Y. L. Yung, J. S. Margolis, and S. P. Sander, “OH column abundance over Table Mountain Facility, California: AM-PM diurnal asymmetry,” Geophys. Res. Lett. 32, L13813 (2005).
[CrossRef]

Li, Q.

S. Wang, H. M. Pickett, T. J. Pongetti, R. Cheung, Y. L. Yung, C. Shim, Q. Li, T. Canty, R. J. Salawitch, K. W. Jucks, B. Drouin, and S. P. Sander, “Validation of aura MLS OH measurement with FTUVS total OH column measurement at TMF, California,” J. Geophys. Res. (to be published).
[PubMed]

Margolis, J. S.

K. F. Li, R. P. Cageao, E. M. Karpilovsky, F. P. Mills, Y. L. Yung, J. S. Margolis, and S. P. Sander, “OH column abundance over Table Mountain Facility, California: AM-PM diurnal asymmetry,” Geophys. Res. Lett. 32, L13813 (2005).
[CrossRef]

Martinez, M.

I. C. Faloona, D. Tan, R. L. Lesher, N. L. Hazen, C. L. Frame, J. B. Simpas, H. Harder, M. Martinez, P. Di Carlo, X. Ren, and W. H. Brune, “Laser-induced fluorescence instrument for detecting tropospheric OH and HO2: characteristics and calibration,” J. Atmos. Chem. 47, 139-167 (2004).
[CrossRef]

McGee, T. J.

W. S. Heaps and T. J. McGee, “Progress in stratospheric hydroxyl measurement by balloon-borne LIDAR,” J. Geophys. Res. 90, 7913-7921 (1985).
[CrossRef]

McGuire, J. P.

Mills, F. P.

K. F. Li, R. P. Cageao, E. M. Karpilovsky, F. P. Mills, Y. L. Yung, J. S. Margolis, and S. P. Sander, “OH column abundance over Table Mountain Facility, California: AM-PM diurnal asymmetry,” Geophys. Res. Lett. 32, L13813 (2005).
[CrossRef]

F. P. Mills, R. P. Cageao, S. P. Sander, M. Allen, Y. L. Yung, E. E. Remsberg, J. M. Russell III, and U. Richter, “OH column abundance over Table Mountain Facility, California: intra-annual variations and comparisons to model predictions for 1997-2001,” J. Geophys. Res. 1084785 (2003).
[CrossRef]

F. P. Mills, R. P. Cageao, V. Nemtchinov, Y. Jiang, and S. P. Sander, “OH column abundance over Table Mountain Facility, California: annual average 1997-2000,” Geophys. Res. Lett. 29, 1742 (2002),
[CrossRef]

R. P. Cageao, J. F. Blavier, J. P. McGuire, Y. Jiang, V. Nemtchinov, F. P. Mills, and S. P. Sander, “High-resolution Fourier-transform ultraviolet-visible spectrometer for the measurement of atmospheric trace species: application to OH,” Appl. Opt. 40, 2024-2030 (2001).
[CrossRef]

Minschwaner, K.

C. R. Burnett and K. Minschwaner, “Continuing development in the regime of decreased atmospheric column OH at Fritz Peak, Colorado,” Geophys. Res. Lett. 25, 1313-1316 (1998).
[CrossRef]

T. Canty, K. Minschwaner, K. W. Jucks, and A. K. Smith, “A review of hydroxyl in the middle atmosphere: comparison of measured and modeled vertical profiles and ground-based column observations,” in Vol. 123 of Atmospheric Sciences Across the Stratopause, Geophysical Monograph Series, E. Siskind, S. D. Eckermann, and M. E. Summers, eds. (American Geophysical Union, 2000), pp. 131-136.
[CrossRef]

Minschwaner, K. R.

C. R. Burnett, K. R. Minschwaner, and E. B. Burnett, “Vertical column abundance measurements of atmospheric hydroxyl from 26 °N, 40 °N, and 65 °N,” J. Geophys. Res. 93, 5241-5253 (1988).
[CrossRef]

Morgan, M. F.

R. P. Cageao, Y. L. Ha., Y. Jiang, M. F. Morgan, Y. L. Yung, and S. P. Sander, “Calculated hydroxyl A2Σ-->X2Π (0,0) band emission rate factors applicable to atmospheric spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 57, 703-717 (1997).
[CrossRef]

Morrill, J. S.

R. R. Conway, M. H. Stevens, J. G. Cardon, S. E. Zasadil, C. M. Brown, J. S. Morrill, and G. H. Mount, “Satellite measurements of hydroxyl in the mesosphere,” Geophys. Res. Lett. 23, 2093-2096 (1996).
[CrossRef]

Mount, G. H.

R. R. Conway, M. H. Stevens, C. M. Brown, J. G. Cardon, S. E. Zasadil, and G. H. Mount, “Middle Atmosphere High Resolution Spectrograph Investigation,” J. Geophys. Res. 104, 16327-16348 (1999).
[CrossRef]

R. R. Conway, M. H. Stevens, J. G. Cardon, S. E. Zasadil, C. M. Brown, J. S. Morrill, and G. H. Mount, “Satellite measurements of hydroxyl in the mesosphere,” Geophys. Res. Lett. 23, 2093-2096 (1996).
[CrossRef]

G. H. Mount, “The measurement of tropospheric OH by long path absorption 1. Instrumentation,”J. Geophys. Res. 97, 2427 (1992).
[CrossRef]

Müller, R.

R. Müller, and R. J. Salawitch, “Upper stratospheric processes,” in Scientific Assessment of Ozone Depletion: 1998, D. L. Albritton, ed. (World Meteorological Organization, 1999), pp. 6.1-6.44.

Murata, I.

N. Iwagami, S. Inomata, I. Murata, and T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere,” J. Atmos. Chem. 20, 1-15 (1995).
[CrossRef]

Nemtchinov, V.

F. P. Mills, R. P. Cageao, V. Nemtchinov, Y. Jiang, and S. P. Sander, “OH column abundance over Table Mountain Facility, California: annual average 1997-2000,” Geophys. Res. Lett. 29, 1742 (2002),
[CrossRef]

R. P. Cageao, J. F. Blavier, J. P. McGuire, Y. Jiang, V. Nemtchinov, F. P. Mills, and S. P. Sander, “High-resolution Fourier-transform ultraviolet-visible spectrometer for the measurement of atmospheric trace species: application to OH,” Appl. Opt. 40, 2024-2030 (2001).
[CrossRef]

Notholt, J.

Ogawa, T.

N. Iwagami, S. Inomata, and T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere: 2. Measurement for three years and comparison with a 1D model,” J. Atmos. Chem. 29, 195-216 (1998).
[CrossRef]

N. Iwagami, S. Inomata, I. Murata, and T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere,” J. Atmos. Chem. 20, 1-15 (1995).
[CrossRef]

Oliver, J. F.

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, and J. G. Anderson, “Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858-76 (1994).
[CrossRef]

Park, J. H.

J. H. Park and B. Carli, “Spectroscopic measurement of HO2, H2O2, and OH in the stratosphere,” J. Geophys. Res. 96, 22535-22541 (1991).
[CrossRef]

Peterson, D. B.

H. M. Pickett and D. B. Peterson, “Comparison of measured stratospheric OH with prediction,” J. Geophys. Res. 101, 16789-16796 (1996).
[CrossRef]

H. M. Pickett and D. B. Peterson, “Stratospheric OH measurements with a far-infrared limb observing spectrometer,” J. Geophys. Res. Atmos. 98, 20507-20515 (1993).
[CrossRef]

Pickett, H. M.

H. M. Pickett and D. B. Peterson, “Comparison of measured stratospheric OH with prediction,” J. Geophys. Res. 101, 16789-16796 (1996).
[CrossRef]

H. M. Pickett and D. B. Peterson, “Stratospheric OH measurements with a far-infrared limb observing spectrometer,” J. Geophys. Res. Atmos. 98, 20507-20515 (1993).
[CrossRef]

S. Wang, H. M. Pickett, T. J. Pongetti, R. Cheung, Y. L. Yung, C. Shim, Q. Li, T. Canty, R. J. Salawitch, K. W. Jucks, B. Drouin, and S. P. Sander, “Validation of aura MLS OH measurement with FTUVS total OH column measurement at TMF, California,” J. Geophys. Res. (to be published).
[PubMed]

Plass-Dulmer, C.

H. Berresheim, T. Elste, C. Plass-Dulmer, F. L. Eisele, and D. J. Tanner, “Chemical ionization mass spectrometer for long-term measurement of atmospheric OH and HO2SO4,” Int. J. Mass Spectrom. 202(1-3), 91-109 (2000).
[CrossRef]

Pongetti, T. J.

S. Wang, H. M. Pickett, T. J. Pongetti, R. Cheung, Y. L. Yung, C. Shim, Q. Li, T. Canty, R. J. Salawitch, K. W. Jucks, B. Drouin, and S. P. Sander, “Validation of aura MLS OH measurement with FTUVS total OH column measurement at TMF, California,” J. Geophys. Res. (to be published).
[PubMed]

Prather, M. J.

M. J. Prather, “Ozone in the upper stratosphere and mesosphere,” J. Geophys. Res. 86, 5325-5338 (1981).
[CrossRef]

Preisendorfer, R. W.

R. W. Preisendorfer, Principal Component Analysis in Meteorology and Oceanography (Elsevier Science, 1988), p. 425.

Remsberg, E. E.

F. P. Mills, R. P. Cageao, S. P. Sander, M. Allen, Y. L. Yung, E. E. Remsberg, J. M. Russell III, and U. Richter, “OH column abundance over Table Mountain Facility, California: intra-annual variations and comparisons to model predictions for 1997-2001,” J. Geophys. Res. 1084785 (2003).
[CrossRef]

Ren, X.

I. C. Faloona, D. Tan, R. L. Lesher, N. L. Hazen, C. L. Frame, J. B. Simpas, H. Harder, M. Martinez, P. Di Carlo, X. Ren, and W. H. Brune, “Laser-induced fluorescence instrument for detecting tropospheric OH and HO2: characteristics and calibration,” J. Atmos. Chem. 47, 139-167 (2004).
[CrossRef]

Richter, U.

F. P. Mills, R. P. Cageao, S. P. Sander, M. Allen, Y. L. Yung, E. E. Remsberg, J. M. Russell III, and U. Richter, “OH column abundance over Table Mountain Facility, California: intra-annual variations and comparisons to model predictions for 1997-2001,” J. Geophys. Res. 1084785 (2003).
[CrossRef]

Russell, J. M.

F. P. Mills, R. P. Cageao, S. P. Sander, M. Allen, Y. L. Yung, E. E. Remsberg, J. M. Russell III, and U. Richter, “OH column abundance over Table Mountain Facility, California: intra-annual variations and comparisons to model predictions for 1997-2001,” J. Geophys. Res. 1084785 (2003).
[CrossRef]

Salawitch, R. J.

R. Müller, and R. J. Salawitch, “Upper stratospheric processes,” in Scientific Assessment of Ozone Depletion: 1998, D. L. Albritton, ed. (World Meteorological Organization, 1999), pp. 6.1-6.44.

S. Wang, H. M. Pickett, T. J. Pongetti, R. Cheung, Y. L. Yung, C. Shim, Q. Li, T. Canty, R. J. Salawitch, K. W. Jucks, B. Drouin, and S. P. Sander, “Validation of aura MLS OH measurement with FTUVS total OH column measurement at TMF, California,” J. Geophys. Res. (to be published).
[PubMed]

Sander, S. P.

K. F. Li, R. P. Cageao, E. M. Karpilovsky, F. P. Mills, Y. L. Yung, J. S. Margolis, and S. P. Sander, “OH column abundance over Table Mountain Facility, California: AM-PM diurnal asymmetry,” Geophys. Res. Lett. 32, L13813 (2005).
[CrossRef]

F. P. Mills, R. P. Cageao, S. P. Sander, M. Allen, Y. L. Yung, E. E. Remsberg, J. M. Russell III, and U. Richter, “OH column abundance over Table Mountain Facility, California: intra-annual variations and comparisons to model predictions for 1997-2001,” J. Geophys. Res. 1084785 (2003).
[CrossRef]

F. P. Mills, R. P. Cageao, V. Nemtchinov, Y. Jiang, and S. P. Sander, “OH column abundance over Table Mountain Facility, California: annual average 1997-2000,” Geophys. Res. Lett. 29, 1742 (2002),
[CrossRef]

R. P. Cageao, J. F. Blavier, J. P. McGuire, Y. Jiang, V. Nemtchinov, F. P. Mills, and S. P. Sander, “High-resolution Fourier-transform ultraviolet-visible spectrometer for the measurement of atmospheric trace species: application to OH,” Appl. Opt. 40, 2024-2030 (2001).
[CrossRef]

R. P. Cageao, Y. L. Ha., Y. Jiang, M. F. Morgan, Y. L. Yung, and S. P. Sander, “Calculated hydroxyl A2Σ-->X2Π (0,0) band emission rate factors applicable to atmospheric spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 57, 703-717 (1997).
[CrossRef]

S. Wang, H. M. Pickett, T. J. Pongetti, R. Cheung, Y. L. Yung, C. Shim, Q. Li, T. Canty, R. J. Salawitch, K. W. Jucks, B. Drouin, and S. P. Sander, “Validation of aura MLS OH measurement with FTUVS total OH column measurement at TMF, California,” J. Geophys. Res. (to be published).
[PubMed]

Schutt, H.

Shim, C.

S. Wang, H. M. Pickett, T. J. Pongetti, R. Cheung, Y. L. Yung, C. Shim, Q. Li, T. Canty, R. J. Salawitch, K. W. Jucks, B. Drouin, and S. P. Sander, “Validation of aura MLS OH measurement with FTUVS total OH column measurement at TMF, California,” J. Geophys. Res. (to be published).
[PubMed]

Simpas, J. B.

I. C. Faloona, D. Tan, R. L. Lesher, N. L. Hazen, C. L. Frame, J. B. Simpas, H. Harder, M. Martinez, P. Di Carlo, X. Ren, and W. H. Brune, “Laser-induced fluorescence instrument for detecting tropospheric OH and HO2: characteristics and calibration,” J. Atmos. Chem. 47, 139-167 (2004).
[CrossRef]

Smith, A. K.

T. Canty, K. Minschwaner, K. W. Jucks, and A. K. Smith, “A review of hydroxyl in the middle atmosphere: comparison of measured and modeled vertical profiles and ground-based column observations,” in Vol. 123 of Atmospheric Sciences Across the Stratopause, Geophysical Monograph Series, E. Siskind, S. D. Eckermann, and M. E. Summers, eds. (American Geophysical Union, 2000), pp. 131-136.
[CrossRef]

Stark, G.

Stevens, M. H.

R. R. Conway, M. H. Stevens, C. M. Brown, J. G. Cardon, S. E. Zasadil, and G. H. Mount, “Middle Atmosphere High Resolution Spectrograph Investigation,” J. Geophys. Res. 104, 16327-16348 (1999).
[CrossRef]

R. R. Conway, M. H. Stevens, J. G. Cardon, S. E. Zasadil, C. M. Brown, J. S. Morrill, and G. H. Mount, “Satellite measurements of hydroxyl in the mesosphere,” Geophys. Res. Lett. 23, 2093-2096 (1996).
[CrossRef]

Stimpfle, R. M.

P. O. Wennberg, T. F. Hanisco, R. C. Cohen, R. M. Stimpfle, L. B. Lapson, and J. G. Anderson, “In situ measurements of OH and HO2 in the upper troposphere and stratosphere,” J. Atmos. Sci. 19, 3412-3420 (1995).

R. M. Stimpfle, P. O. Wennberg, L. B. Lapson, and J. G. Anderson, “Simultaneous, in situ measurements of OH and HO2 in the stratosphere,” Geophys. Res. Lett. 17, 1905-1908 (1990).
[CrossRef]

R. M. Stimpfle and J. G. Anderson, “In situ detection of OH in the lower stratosphere with a balloon borne high repetition rate laser system,” Geophys. Res. Lett. 15, 1503-1506 (1988).
[CrossRef]

Tan, D.

I. C. Faloona, D. Tan, R. L. Lesher, N. L. Hazen, C. L. Frame, J. B. Simpas, H. Harder, M. Martinez, P. Di Carlo, X. Ren, and W. H. Brune, “Laser-induced fluorescence instrument for detecting tropospheric OH and HO2: characteristics and calibration,” J. Atmos. Chem. 47, 139-167 (2004).
[CrossRef]

Tanner, D. J.

H. Berresheim, T. Elste, C. Plass-Dulmer, F. L. Eisele, and D. J. Tanner, “Chemical ionization mass spectrometer for long-term measurement of atmospheric OH and HO2SO4,” Int. J. Mass Spectrom. 202(1-3), 91-109 (2000).
[CrossRef]

Traub, W. A.

D. G. Johnson, K. W. Jucks, W. A. Traub, and K. V. Chance, “Smithsonian stratospheric far-infrared spectrometer and data reduction system,” J. Geophys. Res 100, 3091-3106(1995).
[CrossRef]

Wang, S.

S. Wang, H. M. Pickett, T. J. Pongetti, R. Cheung, Y. L. Yung, C. Shim, Q. Li, T. Canty, R. J. Salawitch, K. W. Jucks, B. Drouin, and S. P. Sander, “Validation of aura MLS OH measurement with FTUVS total OH column measurement at TMF, California,” J. Geophys. Res. (to be published).
[PubMed]

Wennberg, P. O.

P. O. Wennberg, T. F. Hanisco, R. C. Cohen, R. M. Stimpfle, L. B. Lapson, and J. G. Anderson, “In situ measurements of OH and HO2 in the upper troposphere and stratosphere,” J. Atmos. Sci. 19, 3412-3420 (1995).

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, and J. G. Anderson, “Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858-76 (1994).
[CrossRef]

R. M. Stimpfle, P. O. Wennberg, L. B. Lapson, and J. G. Anderson, “Simultaneous, in situ measurements of OH and HO2 in the stratosphere,” Geophys. Res. Lett. 17, 1905-1908 (1990).
[CrossRef]

Yung, Y. L.

K. F. Li, R. P. Cageao, E. M. Karpilovsky, F. P. Mills, Y. L. Yung, J. S. Margolis, and S. P. Sander, “OH column abundance over Table Mountain Facility, California: AM-PM diurnal asymmetry,” Geophys. Res. Lett. 32, L13813 (2005).
[CrossRef]

F. P. Mills, R. P. Cageao, S. P. Sander, M. Allen, Y. L. Yung, E. E. Remsberg, J. M. Russell III, and U. Richter, “OH column abundance over Table Mountain Facility, California: intra-annual variations and comparisons to model predictions for 1997-2001,” J. Geophys. Res. 1084785 (2003).
[CrossRef]

R. P. Cageao, Y. L. Ha., Y. Jiang, M. F. Morgan, Y. L. Yung, and S. P. Sander, “Calculated hydroxyl A2Σ-->X2Π (0,0) band emission rate factors applicable to atmospheric spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 57, 703-717 (1997).
[CrossRef]

S. Wang, H. M. Pickett, T. J. Pongetti, R. Cheung, Y. L. Yung, C. Shim, Q. Li, T. Canty, R. J. Salawitch, K. W. Jucks, B. Drouin, and S. P. Sander, “Validation of aura MLS OH measurement with FTUVS total OH column measurement at TMF, California,” J. Geophys. Res. (to be published).
[PubMed]

Zasadil, S. E.

R. R. Conway, M. H. Stevens, C. M. Brown, J. G. Cardon, S. E. Zasadil, and G. H. Mount, “Middle Atmosphere High Resolution Spectrograph Investigation,” J. Geophys. Res. 104, 16327-16348 (1999).
[CrossRef]

R. R. Conway, M. H. Stevens, J. G. Cardon, S. E. Zasadil, C. M. Brown, J. S. Morrill, and G. H. Mount, “Satellite measurements of hydroxyl in the mesosphere,” Geophys. Res. Lett. 23, 2093-2096 (1996).
[CrossRef]

Appl. Opt. (2)

Geophys. Res. Lett. (7)

F. P. Mills, R. P. Cageao, V. Nemtchinov, Y. Jiang, and S. P. Sander, “OH column abundance over Table Mountain Facility, California: annual average 1997-2000,” Geophys. Res. Lett. 29, 1742 (2002),
[CrossRef]

C. R. Burnett and E. B. Burnett, “The regime of decreased OH vertical column abundances at Fritz Peak Observatory, CO: 1991-1995,” Geophys. Res. Lett. 23, 1925-1927 (1996).
[CrossRef]

C. R. Burnett and K. Minschwaner, “Continuing development in the regime of decreased atmospheric column OH at Fritz Peak, Colorado,” Geophys. Res. Lett. 25, 1313-1316 (1998).
[CrossRef]

K. F. Li, R. P. Cageao, E. M. Karpilovsky, F. P. Mills, Y. L. Yung, J. S. Margolis, and S. P. Sander, “OH column abundance over Table Mountain Facility, California: AM-PM diurnal asymmetry,” Geophys. Res. Lett. 32, L13813 (2005).
[CrossRef]

R. M. Stimpfle and J. G. Anderson, “In situ detection of OH in the lower stratosphere with a balloon borne high repetition rate laser system,” Geophys. Res. Lett. 15, 1503-1506 (1988).
[CrossRef]

R. M. Stimpfle, P. O. Wennberg, L. B. Lapson, and J. G. Anderson, “Simultaneous, in situ measurements of OH and HO2 in the stratosphere,” Geophys. Res. Lett. 17, 1905-1908 (1990).
[CrossRef]

R. R. Conway, M. H. Stevens, J. G. Cardon, S. E. Zasadil, C. M. Brown, J. S. Morrill, and G. H. Mount, “Satellite measurements of hydroxyl in the mesosphere,” Geophys. Res. Lett. 23, 2093-2096 (1996).
[CrossRef]

Int. J. Mass Spectrom. (1)

H. Berresheim, T. Elste, C. Plass-Dulmer, F. L. Eisele, and D. J. Tanner, “Chemical ionization mass spectrometer for long-term measurement of atmospheric OH and HO2SO4,” Int. J. Mass Spectrom. 202(1-3), 91-109 (2000).
[CrossRef]

J. Atmos. Chem. (3)

I. C. Faloona, D. Tan, R. L. Lesher, N. L. Hazen, C. L. Frame, J. B. Simpas, H. Harder, M. Martinez, P. Di Carlo, X. Ren, and W. H. Brune, “Laser-induced fluorescence instrument for detecting tropospheric OH and HO2: characteristics and calibration,” J. Atmos. Chem. 47, 139-167 (2004).
[CrossRef]

N. Iwagami, S. Inomata, and T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere: 2. Measurement for three years and comparison with a 1D model,” J. Atmos. Chem. 29, 195-216 (1998).
[CrossRef]

N. Iwagami, S. Inomata, I. Murata, and T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere,” J. Atmos. Chem. 20, 1-15 (1995).
[CrossRef]

J. Atmos. Sci. (1)

P. O. Wennberg, T. F. Hanisco, R. C. Cohen, R. M. Stimpfle, L. B. Lapson, and J. G. Anderson, “In situ measurements of OH and HO2 in the upper troposphere and stratosphere,” J. Atmos. Sci. 19, 3412-3420 (1995).

J. Environ. Monitor. (1)

W. J. Bloss, T. J. Gravestock, D. E. Heard, T. Ingham, G. P. Johnson, and J. D. Lee, “Application of a compact all solid-state laser system to the in situ detection of atmospheric OH, HO2, NO, and IO by laser-induced fluorescence,” J. Environ. Monitor. 5, 21-28 (2003).
[CrossRef]

J. Geophys. Res (1)

D. G. Johnson, K. W. Jucks, W. A. Traub, and K. V. Chance, “Smithsonian stratospheric far-infrared spectrometer and data reduction system,” J. Geophys. Res 100, 3091-3106(1995).
[CrossRef]

J. Geophys. Res. (11)

R. R. Conway, M. H. Stevens, C. M. Brown, J. G. Cardon, S. E. Zasadil, and G. H. Mount, “Middle Atmosphere High Resolution Spectrograph Investigation,” J. Geophys. Res. 104, 16327-16348 (1999).
[CrossRef]

G. H. Mount, “The measurement of tropospheric OH by long path absorption 1. Instrumentation,”J. Geophys. Res. 97, 2427 (1992).
[CrossRef]

J. H. Park and B. Carli, “Spectroscopic measurement of HO2, H2O2, and OH in the stratosphere,” J. Geophys. Res. 96, 22535-22541 (1991).
[CrossRef]

F. P. Mills, R. P. Cageao, S. P. Sander, M. Allen, Y. L. Yung, E. E. Remsberg, J. M. Russell III, and U. Richter, “OH column abundance over Table Mountain Facility, California: intra-annual variations and comparisons to model predictions for 1997-2001,” J. Geophys. Res. 1084785 (2003).
[CrossRef]

S. Wang, H. M. Pickett, T. J. Pongetti, R. Cheung, Y. L. Yung, C. Shim, Q. Li, T. Canty, R. J. Salawitch, K. W. Jucks, B. Drouin, and S. P. Sander, “Validation of aura MLS OH measurement with FTUVS total OH column measurement at TMF, California,” J. Geophys. Res. (to be published).
[PubMed]

H. M. Pickett and D. B. Peterson, “Comparison of measured stratospheric OH with prediction,” J. Geophys. Res. 101, 16789-16796 (1996).
[CrossRef]

J. G. Anderson, “Rocket measurement of OH in the mesosphere,” J. Geophys. Res. 76, 7820-7824 (1971).
[CrossRef]

W. S. Heaps and T. J. McGee, “Progress in stratospheric hydroxyl measurement by balloon-borne LIDAR,” J. Geophys. Res. 90, 7913-7921 (1985).
[CrossRef]

C. R. Burnett and E. B. Burnett, “Spectroscopic measurements of the vertical column abundance of hydroxyl (OH) in the earth's atmosphere,” J. Geophys. Res. 86, 5185-5202(1981).
[CrossRef]

C. R. Burnett, K. R. Minschwaner, and E. B. Burnett, “Vertical column abundance measurements of atmospheric hydroxyl from 26 °N, 40 °N, and 65 °N,” J. Geophys. Res. 93, 5241-5253 (1988).
[CrossRef]

M. J. Prather, “Ozone in the upper stratosphere and mesosphere,” J. Geophys. Res. 86, 5325-5338 (1981).
[CrossRef]

J. Geophys. Res. Atmos. (1)

H. M. Pickett and D. B. Peterson, “Stratospheric OH measurements with a far-infrared limb observing spectrometer,” J. Geophys. Res. Atmos. 98, 20507-20515 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

R. P. Cageao, Y. L. Ha., Y. Jiang, M. F. Morgan, Y. L. Yung, and S. P. Sander, “Calculated hydroxyl A2Σ-->X2Π (0,0) band emission rate factors applicable to atmospheric spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 57, 703-717 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, and J. G. Anderson, “Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858-76 (1994).
[CrossRef]

Other (3)

R. Müller, and R. J. Salawitch, “Upper stratospheric processes,” in Scientific Assessment of Ozone Depletion: 1998, D. L. Albritton, ed. (World Meteorological Organization, 1999), pp. 6.1-6.44.

R. W. Preisendorfer, Principal Component Analysis in Meteorology and Oceanography (Elsevier Science, 1988), p. 425.

T. Canty, K. Minschwaner, K. W. Jucks, and A. K. Smith, “A review of hydroxyl in the middle atmosphere: comparison of measured and modeled vertical profiles and ground-based column observations,” in Vol. 123 of Atmospheric Sciences Across the Stratopause, Geophysical Monograph Series, E. Siskind, S. D. Eckermann, and M. E. Summers, eds. (American Geophysical Union, 2000), pp. 131-136.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Ratio of the east and west limb spectra for a spectra close to solar noon on the date 6/13/2005, with the vertical solid line corresponding to the line center for the P 1 ( 1 ) OH absorption line. The nearby P Q 21 ( 3 ) satellite line is also visible. (a) The TMF instrument alternates between looking at the west limb of the Sun (the dashed line) and the east limb (the dotted line) over the course of the day for 15 minute time steps. (b) The TMF instrument then shifts the west limb over the east limb and takes the ratio of the shifted west limb by the east limb.. The absorption line then stands out prominently while much of the solar background is removed. The frequency difference between the vertical line and the observed OH frequencies is due to a small calibration error (see text).

Fig. 2
Fig. 2

Linear slope removal technique used in earlier retrieval attempts, applied to the east/west limb ratio spectra in Fig. 1b. Concerns about artifacts created by a linear slope removal in parts of the solar spectrum with a curved baseline have led to the use of a FFT-low pass filter smoothing method as shown in Fig. 4.

Fig. 3
Fig. 3

Doppler model (the dotted line) applied to the ratio of the east and west limbs (the solid line). Higher precision measurements can be obtained by improving this fit, especially in the weaker lines where the Doppler model does not adequately fit the absorption line.

Fig. 4
Fig. 4

“Fast-Fourier transform smoothing” method. The dashed line is the baseline obtained by applying a low-pass filter to the entire spectrum, which maps the larger background while ignoring the smaller features such as the absorption lines. The bottom graph shows the spectrum after this baseline is removed.

Fig. 5
Fig. 5

Sample spectra from the P 1 ( 2 ) absorption line, which is located in a less optimal region of the solar spectrum. The selection of the right “nanowindow” width can have a pronounced effect on the application of the spectral fit (the red line) to the east/west limb ratio (the black line). A window size too small can cut off part of the absorption signal, resulting in an uneven baseline, and from that a vertical bias in the diurnal OH profile. A window too large introduces additional noise into the retrieval, especially in regions where the solar baseline is especially noisy. We have found that a window width of 4 full widths at half-maximum (fwhm) horizontal from the “peak” and “valley” of the absorption is optimal. The two inner vertical dotted lines show a 2 fwhm window, while the two outer vertical dashed lines show a 5 fwhm window.

Fig. 6
Fig. 6

Comparison of the retrieved diurnal OH column abundances from several different lines over the course of a single day, 5/7/2002. The “microwindow” method uses previous retrieval methods without any of the modifications listed in this paper. The “nanowindow” method uses the nanowindow described in Section 2C, and the “nanowindow, FFT smoothed” additionally uses the FFT low-pass filter to remove a baseline as described in Section 2B. Note that we use line-to-line correlation as a good “sanity check” to ensure that the results are accurate, as ideally each line should provide roughly the same column abundances at each time step.

Fig. 7
Fig. 7

Typical spectral fit showing the measured ratio between the east and the west limbs. The extent of the defined “nanowindow” consists of the area in between the outer two vertical lines, and the spectral fit shows the results of using the conjugate gradient method to improve the fit to the limb spectra within the nanowindow.

Fig. 8
Fig. 8

Graph of the diurnal OH abundances by solar hour angle for a sample day, 5/7/2002. Note that the black line is the weighted average of all of the five individual lines weighted by their signal-to-noise ratio. The error bars correspond to the calculated 1-standard deviation for the five-line weighted average calculated OH column abundance.

Fig. 9
Fig. 9

“Signal-to-noise” ratios as defined in Section 2D over the course of a sample day, 5/7/2002. A higher signal-to-noise ratio means that the corresponding column abundance for that line received a larger weighting for the multiple-line average for that one specific time.

Fig. 10
Fig. 10

Comparison of the histograms of the 2 σ OH column uncertainty of the mean ( Δ   column / column ) for the P 1 ( 1 ) OH line over TMF from 1998–2006 with and without the methods described in this paper, and for the dynamically selected five-line weighted average. The method here is similar to that used to find Fig. 2 of Mills et al. [30], except that the deviation is calculated from a second order polynomial fit to the diurnal OH column abundances, instead of two separate linear fits to the morning and afternoon OH abundances.

Tables (1)

Tables Icon

Table 1 Five OH Absorption Lines Used in This Analysis a

Metrics