Abstract

We present studies of polarized absorption [linear dichroism (LD)] and fluorescence polarization of the styryl derivative (LDS 798) embedded in oriented poly(vinyl alcohol) (PVA) films. These films were oriented by progressive stretching up to eight folds. Both vertical and horizontal components of absorptions and fluorescence were measured and dichroic ratios were determined for different film stretching ratios. The dichroic ratio and fluorescence anisotropy values were analyzed as a function of PVA film stretching ratio by fitting according to the previously developed theory. For maximum stretching ratios, exceptionally high anisotropy (0.8) and polarization (0.9) values have been measured. The stretched films have high polarization values also for isotropic excitation in a wide spectral range (500700nm). Such films can be conveniently used as high polarization standards and we envision they will also have applications in near infrared (NIR) imaging microscopy, where they can be used for correcting an instrumental factor in polarization measurements.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Periasamy, M. Elangovan, E. Elliott, and D. L. Brautigan, “Fluorescence lifetime imaging (FLIM) of green fluorescent fusion proteins in living cells,” Methods Mol. Biol. 183, 89-100 (2002).
  2. A. Squire, P. I. H. Bastiaens, “Three dimensional image restoration in fluorescence lifetime imaging microscopy,” J. Microsc. 193, 36-49 (1999).
    [CrossRef]
  3. G. Mariott, R. M. Clegg, D. J. Arndt-Jovin, and T. M. Jovin, “Time resolved imaging microscopy, phosphorescence, and delayed fluorescence imaging,” Biophys. J. 60, 1374-1387 (1991).
  4. T. Förster, “Intermolecular energy migration and fluorescence,” Ann. Phys. 2, 55-75 (1948).
  5. S. Hohng, C. Joo, and T. Ha, “Single-molecule three-color FRET,” Biophys. J. 87, 1328-1337 (2004).
    [CrossRef]
  6. X. Zhuang, H. Kim, M. J. Pereira, H. P. Babcock, N. G. Walter, and S. Chu, “Correlating structural dynamics and function in single ribozyme molecules,” Science 296, 1473-1476 (2002).
    [CrossRef]
  7. D. W. Piston and M. Rizzo, “FRET by fluorescence polarization microscopy,” Methods Cell Biol. 85, 415-430.
    [CrossRef]
  8. I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126-2136 (2004).
    [CrossRef]
  9. P. H. Lommerse, H. P. Spaink, and T. Schmidt, “In vivo plasma membrane organization: results of biophysical approaches,” Biochim. Biophys. Acta 1664, 119-131 (2004).
    [CrossRef]
  10. K. Bacia, I. V. Majoul, and P. Schwille, “Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis,” Biophys. J. 83, 1184-1193 (2002).
  11. N. Kahya, D. Scherfeld, K. Bacia, B. Poolman, and P. Schwille, “Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy,” J. Biol. Chem. 278, 28109-28115 (2003).
    [CrossRef]
  12. J. R. Lakowicz, “Fluorescence correlation spectroscopy,” in Principles of Fluorescence Spectroscopy (Springer, 2006), pp. 797-840.
  13. R. M. Clegg, “Fluorescence resonance energy transfer and nucleic acids,” Methods Enzymol. 211, 353-388 (1992).
    [CrossRef]
  14. A. Kawski, “Excitation energy transfer and its manifestation in isotropic media,” Photochem. Photobiol. 38, 487-508 (1983).
    [CrossRef]
  15. Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Basics of fluorescence and FRET,” in Molecular Imaging, FRET Microscopy and Spectroscopy, A. Periasamy and N. R. Day, eds. (Oxford, 2005), pp. 21-56.
  16. W. M. Shih, Z. Gryczynski, J. R. Lakowicz, and J. A. Spudich, “A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin,” Cell 102, 683-694 (2000).
    [CrossRef]
  17. J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. T. Corre, and Y. E. Goldman, “Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization,” Nature 422, 399-404 (2003).
    [CrossRef]
  18. S. Syed, G. E. Snyder, C. Franzini-Armstrong, P. R. Selvin, and Y. E. Goldman, “Adaptability of myosin V by simultaneous detection of position and orientation,” EMBO J. 25, 1795-1803 (2006).
    [CrossRef]
  19. K. Suhling, J. Siegel, P. M. Lanigan, S. Lévêque-Fort, S. E. Webb, D. Phillips, D. M. Davis, and P. M. French, “Time-resolved fluorescence anisotropt imaging applied to live cells,” Opt. Lett. 29, 584-586 (2004).
    [CrossRef]
  20. J. A. Dix and A. S. Verkman, “Mapping of fluorescence anisotropy in living cells by ratio imaging,” Biophys. J. 57, 231-240 (1990).
  21. A. H. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, “Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM),” Biophys. J. 83, 1631-1649 (2002).
  22. A. Squire, J. Verveer, O. Rocks, and P. I. Bastiaens, “Red-edge anisotropy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells,” J. Struct. Biol. 147, 62-69 (2004).
    [CrossRef]
  23. A. G. Harpur, F. S. Wouters, and P. I. H. Bastiaens, “Imaging FRET between spectrally similar GFP molecules in a single cells,” Nat. Biotechnol. 19, 167-169 (2001).
    [CrossRef]
  24. A. P. Demchenko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and M. Fishman, “Intramolecular dynamics in the environment of the single tryptophan residue in staphylococcal nuclease,” Biophys. Chem. 48, 39-48 (1993).
    [CrossRef]
  25. Z. Gryczynski and E. Bucci, “A new front-face optical cell for measuring weak fluorescent emissions with time resolution in the picosecond time scale,” Biophys. Chem. 48, 31-38 (1993).
    [CrossRef]
  26. Z. Gryczynski, E. Bucci, and J. Kusba, “Linear dichroism study of metalloporphyrin transition moments in view of radiationless interactions with tryptophan in hemoproteins,” Photochem. Photobiol. 58, 492-498 (1993).
    [CrossRef]
  27. R. B. Thompson, I. Gryczynski, and J. Malicka, “Fluorescence polarization standards for high-throughput screening and imaging,” BioTechniques 32, 37-38, 40, 42, (2002).
  28. Y. Tanizaki, “Dichroizm of dyes in the stretched PVA sheet. II. The relation between the optical density ratio and the stretch ratio, and an attempt to analyze relative directions of absorption bands,” Bull. Chem. Soc. Japan 32, 75-80(1959).
    [CrossRef]
  29. Y. Tanizaki, “The correction of the relation of the optical density ratio to the stretch ratio to the dichroic spectra,” Bull. Chem. Soc. Japan 38, 1798-1799 (1965).
    [CrossRef]
  30. A. Kawski and Z. Gryczynski, “On the determination of transition-moment directions from emission anisotropy measurements,” Z. Naturforsch. A 41a, 1195-1199 (1986).
  31. A. Kawski and P. Bojarski, “Photoselection of luminescent molecules in isotropic and anisotropic media by multiphoton excitation. Electronic transition moment directions,” Asian J. Spectroscopy 11, 67-94 (2007).
  32. A. Kawski and Z. Gryczynski, “On the determination of transition-moment directions from emission anisotropy measurements,” Z. Naturforsch 42a, 617-621 (1987).
  33. A. Kawski and Z. Gryczynski, “Determination of the transition-moment directions from photoselection in partially oriented systems,” Z. Naturforsch. A 42a, 808-812(1987).
  34. A. Kawski and Z. Gryczynski, “Relation between the emission anisotropy and the dichroic ratio for solute alignment in streached polymer films,” Z. Naturforsch. A 42a, 1396-1398(1987).
  35. C. Horcssler, B. Hardy, and E. Fredericq, “Interaction of ethidium bromide with DNA. Optical and electrooptical study,” Biopolymers 13, 1144-1160 (1974).
  36. Y. Matsuoka, “Film dichroism. 4. Linear dichroism study of orientation behavior of planar molecules in stretched poly(viny1 alcohol) film,” J. Phys. Chem. 84, 1361-1366 (1980).
    [CrossRef]
  37. R. Sens and K. H. Drexhage, “Fluorescence quantum yield of oxazine and carbazine laser dyes,” J. Lumin. 24/25, 709-712(1981).
    [CrossRef]
  38. D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26, 557-573 (1979).

2007

A. Kawski and P. Bojarski, “Photoselection of luminescent molecules in isotropic and anisotropic media by multiphoton excitation. Electronic transition moment directions,” Asian J. Spectroscopy 11, 67-94 (2007).

2006

S. Syed, G. E. Snyder, C. Franzini-Armstrong, P. R. Selvin, and Y. E. Goldman, “Adaptability of myosin V by simultaneous detection of position and orientation,” EMBO J. 25, 1795-1803 (2006).
[CrossRef]

2004

K. Suhling, J. Siegel, P. M. Lanigan, S. Lévêque-Fort, S. E. Webb, D. Phillips, D. M. Davis, and P. M. French, “Time-resolved fluorescence anisotropt imaging applied to live cells,” Opt. Lett. 29, 584-586 (2004).
[CrossRef]

S. Hohng, C. Joo, and T. Ha, “Single-molecule three-color FRET,” Biophys. J. 87, 1328-1337 (2004).
[CrossRef]

I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126-2136 (2004).
[CrossRef]

P. H. Lommerse, H. P. Spaink, and T. Schmidt, “In vivo plasma membrane organization: results of biophysical approaches,” Biochim. Biophys. Acta 1664, 119-131 (2004).
[CrossRef]

A. Squire, J. Verveer, O. Rocks, and P. I. Bastiaens, “Red-edge anisotropy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells,” J. Struct. Biol. 147, 62-69 (2004).
[CrossRef]

2003

N. Kahya, D. Scherfeld, K. Bacia, B. Poolman, and P. Schwille, “Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy,” J. Biol. Chem. 278, 28109-28115 (2003).
[CrossRef]

J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. T. Corre, and Y. E. Goldman, “Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization,” Nature 422, 399-404 (2003).
[CrossRef]

2002

K. Bacia, I. V. Majoul, and P. Schwille, “Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis,” Biophys. J. 83, 1184-1193 (2002).

X. Zhuang, H. Kim, M. J. Pereira, H. P. Babcock, N. G. Walter, and S. Chu, “Correlating structural dynamics and function in single ribozyme molecules,” Science 296, 1473-1476 (2002).
[CrossRef]

A. Periasamy, M. Elangovan, E. Elliott, and D. L. Brautigan, “Fluorescence lifetime imaging (FLIM) of green fluorescent fusion proteins in living cells,” Methods Mol. Biol. 183, 89-100 (2002).

A. H. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, “Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM),” Biophys. J. 83, 1631-1649 (2002).

R. B. Thompson, I. Gryczynski, and J. Malicka, “Fluorescence polarization standards for high-throughput screening and imaging,” BioTechniques 32, 37-38, 40, 42, (2002).

2001

A. G. Harpur, F. S. Wouters, and P. I. H. Bastiaens, “Imaging FRET between spectrally similar GFP molecules in a single cells,” Nat. Biotechnol. 19, 167-169 (2001).
[CrossRef]

2000

W. M. Shih, Z. Gryczynski, J. R. Lakowicz, and J. A. Spudich, “A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin,” Cell 102, 683-694 (2000).
[CrossRef]

1999

A. Squire, P. I. H. Bastiaens, “Three dimensional image restoration in fluorescence lifetime imaging microscopy,” J. Microsc. 193, 36-49 (1999).
[CrossRef]

1993

A. P. Demchenko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and M. Fishman, “Intramolecular dynamics in the environment of the single tryptophan residue in staphylococcal nuclease,” Biophys. Chem. 48, 39-48 (1993).
[CrossRef]

Z. Gryczynski and E. Bucci, “A new front-face optical cell for measuring weak fluorescent emissions with time resolution in the picosecond time scale,” Biophys. Chem. 48, 31-38 (1993).
[CrossRef]

Z. Gryczynski, E. Bucci, and J. Kusba, “Linear dichroism study of metalloporphyrin transition moments in view of radiationless interactions with tryptophan in hemoproteins,” Photochem. Photobiol. 58, 492-498 (1993).
[CrossRef]

1992

R. M. Clegg, “Fluorescence resonance energy transfer and nucleic acids,” Methods Enzymol. 211, 353-388 (1992).
[CrossRef]

1991

G. Mariott, R. M. Clegg, D. J. Arndt-Jovin, and T. M. Jovin, “Time resolved imaging microscopy, phosphorescence, and delayed fluorescence imaging,” Biophys. J. 60, 1374-1387 (1991).

1990

J. A. Dix and A. S. Verkman, “Mapping of fluorescence anisotropy in living cells by ratio imaging,” Biophys. J. 57, 231-240 (1990).

1987

A. Kawski and Z. Gryczynski, “On the determination of transition-moment directions from emission anisotropy measurements,” Z. Naturforsch 42a, 617-621 (1987).

A. Kawski and Z. Gryczynski, “Determination of the transition-moment directions from photoselection in partially oriented systems,” Z. Naturforsch. A 42a, 808-812(1987).

A. Kawski and Z. Gryczynski, “Relation between the emission anisotropy and the dichroic ratio for solute alignment in streached polymer films,” Z. Naturforsch. A 42a, 1396-1398(1987).

1986

A. Kawski and Z. Gryczynski, “On the determination of transition-moment directions from emission anisotropy measurements,” Z. Naturforsch. A 41a, 1195-1199 (1986).

1983

A. Kawski, “Excitation energy transfer and its manifestation in isotropic media,” Photochem. Photobiol. 38, 487-508 (1983).
[CrossRef]

1981

R. Sens and K. H. Drexhage, “Fluorescence quantum yield of oxazine and carbazine laser dyes,” J. Lumin. 24/25, 709-712(1981).
[CrossRef]

1980

Y. Matsuoka, “Film dichroism. 4. Linear dichroism study of orientation behavior of planar molecules in stretched poly(viny1 alcohol) film,” J. Phys. Chem. 84, 1361-1366 (1980).
[CrossRef]

1979

D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26, 557-573 (1979).

1974

C. Horcssler, B. Hardy, and E. Fredericq, “Interaction of ethidium bromide with DNA. Optical and electrooptical study,” Biopolymers 13, 1144-1160 (1974).

1965

Y. Tanizaki, “The correction of the relation of the optical density ratio to the stretch ratio to the dichroic spectra,” Bull. Chem. Soc. Japan 38, 1798-1799 (1965).
[CrossRef]

1959

Y. Tanizaki, “Dichroizm of dyes in the stretched PVA sheet. II. The relation between the optical density ratio and the stretch ratio, and an attempt to analyze relative directions of absorption bands,” Bull. Chem. Soc. Japan 32, 75-80(1959).
[CrossRef]

1948

T. Förster, “Intermolecular energy migration and fluorescence,” Ann. Phys. 2, 55-75 (1948).

Arndt-Jovin, D. J.

A. H. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, “Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM),” Biophys. J. 83, 1631-1649 (2002).

G. Mariott, R. M. Clegg, D. J. Arndt-Jovin, and T. M. Jovin, “Time resolved imaging microscopy, phosphorescence, and delayed fluorescence imaging,” Biophys. J. 60, 1374-1387 (1991).

Axelrod, D.

D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26, 557-573 (1979).

Babcock, H. P.

X. Zhuang, H. Kim, M. J. Pereira, H. P. Babcock, N. G. Walter, and S. Chu, “Correlating structural dynamics and function in single ribozyme molecules,” Science 296, 1473-1476 (2002).
[CrossRef]

Bacia, K.

N. Kahya, D. Scherfeld, K. Bacia, B. Poolman, and P. Schwille, “Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy,” J. Biol. Chem. 278, 28109-28115 (2003).
[CrossRef]

K. Bacia, I. V. Majoul, and P. Schwille, “Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis,” Biophys. J. 83, 1184-1193 (2002).

Bastiaens, P. I.

A. Squire, J. Verveer, O. Rocks, and P. I. Bastiaens, “Red-edge anisotropy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells,” J. Struct. Biol. 147, 62-69 (2004).
[CrossRef]

Bastiaens, P. I. H.

A. G. Harpur, F. S. Wouters, and P. I. H. Bastiaens, “Imaging FRET between spectrally similar GFP molecules in a single cells,” Nat. Biotechnol. 19, 167-169 (2001).
[CrossRef]

A. Squire, P. I. H. Bastiaens, “Three dimensional image restoration in fluorescence lifetime imaging microscopy,” J. Microsc. 193, 36-49 (1999).
[CrossRef]

Bojarski, P.

A. Kawski and P. Bojarski, “Photoselection of luminescent molecules in isotropic and anisotropic media by multiphoton excitation. Electronic transition moment directions,” Asian J. Spectroscopy 11, 67-94 (2007).

Brautigan, D. L.

A. Periasamy, M. Elangovan, E. Elliott, and D. L. Brautigan, “Fluorescence lifetime imaging (FLIM) of green fluorescent fusion proteins in living cells,” Methods Mol. Biol. 183, 89-100 (2002).

Bucci, E.

Z. Gryczynski and E. Bucci, “A new front-face optical cell for measuring weak fluorescent emissions with time resolution in the picosecond time scale,” Biophys. Chem. 48, 31-38 (1993).
[CrossRef]

Z. Gryczynski, E. Bucci, and J. Kusba, “Linear dichroism study of metalloporphyrin transition moments in view of radiationless interactions with tryptophan in hemoproteins,” Photochem. Photobiol. 58, 492-498 (1993).
[CrossRef]

Chu, S.

X. Zhuang, H. Kim, M. J. Pereira, H. P. Babcock, N. G. Walter, and S. Chu, “Correlating structural dynamics and function in single ribozyme molecules,” Science 296, 1473-1476 (2002).
[CrossRef]

Clayton, A. H.

A. H. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, “Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM),” Biophys. J. 83, 1631-1649 (2002).

Clegg, R. M.

R. M. Clegg, “Fluorescence resonance energy transfer and nucleic acids,” Methods Enzymol. 211, 353-388 (1992).
[CrossRef]

G. Mariott, R. M. Clegg, D. J. Arndt-Jovin, and T. M. Jovin, “Time resolved imaging microscopy, phosphorescence, and delayed fluorescence imaging,” Biophys. J. 60, 1374-1387 (1991).

Corre, J. E. T.

J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. T. Corre, and Y. E. Goldman, “Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization,” Nature 422, 399-404 (2003).
[CrossRef]

Davis, D. M.

Demchenko, A. P.

A. P. Demchenko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and M. Fishman, “Intramolecular dynamics in the environment of the single tryptophan residue in staphylococcal nuclease,” Biophys. Chem. 48, 39-48 (1993).
[CrossRef]

Dix, J. A.

J. A. Dix and A. S. Verkman, “Mapping of fluorescence anisotropy in living cells by ratio imaging,” Biophys. J. 57, 231-240 (1990).

Drexhage, K. H.

R. Sens and K. H. Drexhage, “Fluorescence quantum yield of oxazine and carbazine laser dyes,” J. Lumin. 24/25, 709-712(1981).
[CrossRef]

Elangovan, M.

A. Periasamy, M. Elangovan, E. Elliott, and D. L. Brautigan, “Fluorescence lifetime imaging (FLIM) of green fluorescent fusion proteins in living cells,” Methods Mol. Biol. 183, 89-100 (2002).

Elliott, E.

A. Periasamy, M. Elangovan, E. Elliott, and D. L. Brautigan, “Fluorescence lifetime imaging (FLIM) of green fluorescent fusion proteins in living cells,” Methods Mol. Biol. 183, 89-100 (2002).

Fishman, M.

A. P. Demchenko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and M. Fishman, “Intramolecular dynamics in the environment of the single tryptophan residue in staphylococcal nuclease,” Biophys. Chem. 48, 39-48 (1993).
[CrossRef]

Forkey, J. N.

J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. T. Corre, and Y. E. Goldman, “Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization,” Nature 422, 399-404 (2003).
[CrossRef]

Förster, T.

T. Förster, “Intermolecular energy migration and fluorescence,” Ann. Phys. 2, 55-75 (1948).

Franzini-Armstrong, C.

S. Syed, G. E. Snyder, C. Franzini-Armstrong, P. R. Selvin, and Y. E. Goldman, “Adaptability of myosin V by simultaneous detection of position and orientation,” EMBO J. 25, 1795-1803 (2006).
[CrossRef]

Fredericq, E.

C. Horcssler, B. Hardy, and E. Fredericq, “Interaction of ethidium bromide with DNA. Optical and electrooptical study,” Biopolymers 13, 1144-1160 (1974).

French, P. M.

Fujiwara, T.

I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126-2136 (2004).
[CrossRef]

Goldman, Y. E.

S. Syed, G. E. Snyder, C. Franzini-Armstrong, P. R. Selvin, and Y. E. Goldman, “Adaptability of myosin V by simultaneous detection of position and orientation,” EMBO J. 25, 1795-1803 (2006).
[CrossRef]

J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. T. Corre, and Y. E. Goldman, “Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization,” Nature 422, 399-404 (2003).
[CrossRef]

Gryczynski, I.

R. B. Thompson, I. Gryczynski, and J. Malicka, “Fluorescence polarization standards for high-throughput screening and imaging,” BioTechniques 32, 37-38, 40, 42, (2002).

A. P. Demchenko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and M. Fishman, “Intramolecular dynamics in the environment of the single tryptophan residue in staphylococcal nuclease,” Biophys. Chem. 48, 39-48 (1993).
[CrossRef]

Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Basics of fluorescence and FRET,” in Molecular Imaging, FRET Microscopy and Spectroscopy, A. Periasamy and N. R. Day, eds. (Oxford, 2005), pp. 21-56.

Gryczynski, Z.

W. M. Shih, Z. Gryczynski, J. R. Lakowicz, and J. A. Spudich, “A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin,” Cell 102, 683-694 (2000).
[CrossRef]

Z. Gryczynski and E. Bucci, “A new front-face optical cell for measuring weak fluorescent emissions with time resolution in the picosecond time scale,” Biophys. Chem. 48, 31-38 (1993).
[CrossRef]

Z. Gryczynski, E. Bucci, and J. Kusba, “Linear dichroism study of metalloporphyrin transition moments in view of radiationless interactions with tryptophan in hemoproteins,” Photochem. Photobiol. 58, 492-498 (1993).
[CrossRef]

A. P. Demchenko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and M. Fishman, “Intramolecular dynamics in the environment of the single tryptophan residue in staphylococcal nuclease,” Biophys. Chem. 48, 39-48 (1993).
[CrossRef]

A. Kawski and Z. Gryczynski, “Relation between the emission anisotropy and the dichroic ratio for solute alignment in streached polymer films,” Z. Naturforsch. A 42a, 1396-1398(1987).

A. Kawski and Z. Gryczynski, “On the determination of transition-moment directions from emission anisotropy measurements,” Z. Naturforsch 42a, 617-621 (1987).

A. Kawski and Z. Gryczynski, “Determination of the transition-moment directions from photoselection in partially oriented systems,” Z. Naturforsch. A 42a, 808-812(1987).

A. Kawski and Z. Gryczynski, “On the determination of transition-moment directions from emission anisotropy measurements,” Z. Naturforsch. A 41a, 1195-1199 (1986).

Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Basics of fluorescence and FRET,” in Molecular Imaging, FRET Microscopy and Spectroscopy, A. Periasamy and N. R. Day, eds. (Oxford, 2005), pp. 21-56.

Ha, T.

S. Hohng, C. Joo, and T. Ha, “Single-molecule three-color FRET,” Biophys. J. 87, 1328-1337 (2004).
[CrossRef]

Hanley, Q. S.

A. H. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, “Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM),” Biophys. J. 83, 1631-1649 (2002).

Hardy, B.

C. Horcssler, B. Hardy, and E. Fredericq, “Interaction of ethidium bromide with DNA. Optical and electrooptical study,” Biopolymers 13, 1144-1160 (1974).

Harpur, A. G.

A. G. Harpur, F. S. Wouters, and P. I. H. Bastiaens, “Imaging FRET between spectrally similar GFP molecules in a single cells,” Nat. Biotechnol. 19, 167-169 (2001).
[CrossRef]

Hohng, S.

S. Hohng, C. Joo, and T. Ha, “Single-molecule three-color FRET,” Biophys. J. 87, 1328-1337 (2004).
[CrossRef]

Horcssler, C.

C. Horcssler, B. Hardy, and E. Fredericq, “Interaction of ethidium bromide with DNA. Optical and electrooptical study,” Biopolymers 13, 1144-1160 (1974).

Iino, R.

I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126-2136 (2004).
[CrossRef]

Joo, C.

S. Hohng, C. Joo, and T. Ha, “Single-molecule three-color FRET,” Biophys. J. 87, 1328-1337 (2004).
[CrossRef]

Jovin, T. M.

A. H. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, “Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM),” Biophys. J. 83, 1631-1649 (2002).

G. Mariott, R. M. Clegg, D. J. Arndt-Jovin, and T. M. Jovin, “Time resolved imaging microscopy, phosphorescence, and delayed fluorescence imaging,” Biophys. J. 60, 1374-1387 (1991).

Kahya, N.

N. Kahya, D. Scherfeld, K. Bacia, B. Poolman, and P. Schwille, “Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy,” J. Biol. Chem. 278, 28109-28115 (2003).
[CrossRef]

Kasai, R. S.

I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126-2136 (2004).
[CrossRef]

Kawski, A.

A. Kawski and P. Bojarski, “Photoselection of luminescent molecules in isotropic and anisotropic media by multiphoton excitation. Electronic transition moment directions,” Asian J. Spectroscopy 11, 67-94 (2007).

A. Kawski and Z. Gryczynski, “Determination of the transition-moment directions from photoselection in partially oriented systems,” Z. Naturforsch. A 42a, 808-812(1987).

A. Kawski and Z. Gryczynski, “Relation between the emission anisotropy and the dichroic ratio for solute alignment in streached polymer films,” Z. Naturforsch. A 42a, 1396-1398(1987).

A. Kawski and Z. Gryczynski, “On the determination of transition-moment directions from emission anisotropy measurements,” Z. Naturforsch 42a, 617-621 (1987).

A. Kawski and Z. Gryczynski, “On the determination of transition-moment directions from emission anisotropy measurements,” Z. Naturforsch. A 41a, 1195-1199 (1986).

A. Kawski, “Excitation energy transfer and its manifestation in isotropic media,” Photochem. Photobiol. 38, 487-508 (1983).
[CrossRef]

Kim, H.

X. Zhuang, H. Kim, M. J. Pereira, H. P. Babcock, N. G. Walter, and S. Chu, “Correlating structural dynamics and function in single ribozyme molecules,” Science 296, 1473-1476 (2002).
[CrossRef]

Koyama-Honda, I.

I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126-2136 (2004).
[CrossRef]

Kusba, J.

Z. Gryczynski, E. Bucci, and J. Kusba, “Linear dichroism study of metalloporphyrin transition moments in view of radiationless interactions with tryptophan in hemoproteins,” Photochem. Photobiol. 58, 492-498 (1993).
[CrossRef]

Kusumi, A.

I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126-2136 (2004).
[CrossRef]

Lakowicz, J. R.

W. M. Shih, Z. Gryczynski, J. R. Lakowicz, and J. A. Spudich, “A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin,” Cell 102, 683-694 (2000).
[CrossRef]

J. R. Lakowicz, “Fluorescence correlation spectroscopy,” in Principles of Fluorescence Spectroscopy (Springer, 2006), pp. 797-840.

Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Basics of fluorescence and FRET,” in Molecular Imaging, FRET Microscopy and Spectroscopy, A. Periasamy and N. R. Day, eds. (Oxford, 2005), pp. 21-56.

Lanigan, P. M.

Lévêque-Fort, S.

Lommerse, P. H.

P. H. Lommerse, H. P. Spaink, and T. Schmidt, “In vivo plasma membrane organization: results of biophysical approaches,” Biochim. Biophys. Acta 1664, 119-131 (2004).
[CrossRef]

Majoul, I. V.

K. Bacia, I. V. Majoul, and P. Schwille, “Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis,” Biophys. J. 83, 1184-1193 (2002).

Malak, H.

A. P. Demchenko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and M. Fishman, “Intramolecular dynamics in the environment of the single tryptophan residue in staphylococcal nuclease,” Biophys. Chem. 48, 39-48 (1993).
[CrossRef]

Malicka, J.

R. B. Thompson, I. Gryczynski, and J. Malicka, “Fluorescence polarization standards for high-throughput screening and imaging,” BioTechniques 32, 37-38, 40, 42, (2002).

Mariott, G.

G. Mariott, R. M. Clegg, D. J. Arndt-Jovin, and T. M. Jovin, “Time resolved imaging microscopy, phosphorescence, and delayed fluorescence imaging,” Biophys. J. 60, 1374-1387 (1991).

Matsuoka, Y.

Y. Matsuoka, “Film dichroism. 4. Linear dichroism study of orientation behavior of planar molecules in stretched poly(viny1 alcohol) film,” J. Phys. Chem. 84, 1361-1366 (1980).
[CrossRef]

Murakoshi, H.

I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126-2136 (2004).
[CrossRef]

Pereira, M. J.

X. Zhuang, H. Kim, M. J. Pereira, H. P. Babcock, N. G. Walter, and S. Chu, “Correlating structural dynamics and function in single ribozyme molecules,” Science 296, 1473-1476 (2002).
[CrossRef]

Periasamy, A.

A. Periasamy, M. Elangovan, E. Elliott, and D. L. Brautigan, “Fluorescence lifetime imaging (FLIM) of green fluorescent fusion proteins in living cells,” Methods Mol. Biol. 183, 89-100 (2002).

Phillips, D.

Piston, D. W.

D. W. Piston and M. Rizzo, “FRET by fluorescence polarization microscopy,” Methods Cell Biol. 85, 415-430.
[CrossRef]

Poolman, B.

N. Kahya, D. Scherfeld, K. Bacia, B. Poolman, and P. Schwille, “Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy,” J. Biol. Chem. 278, 28109-28115 (2003).
[CrossRef]

Quinlan, M. E.

J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. T. Corre, and Y. E. Goldman, “Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization,” Nature 422, 399-404 (2003).
[CrossRef]

Ritchie, K.

I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126-2136 (2004).
[CrossRef]

Rizzo, M.

D. W. Piston and M. Rizzo, “FRET by fluorescence polarization microscopy,” Methods Cell Biol. 85, 415-430.
[CrossRef]

Rocks, O.

A. Squire, J. Verveer, O. Rocks, and P. I. Bastiaens, “Red-edge anisotropy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells,” J. Struct. Biol. 147, 62-69 (2004).
[CrossRef]

Scherfeld, D.

N. Kahya, D. Scherfeld, K. Bacia, B. Poolman, and P. Schwille, “Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy,” J. Biol. Chem. 278, 28109-28115 (2003).
[CrossRef]

Schmidt, T.

P. H. Lommerse, H. P. Spaink, and T. Schmidt, “In vivo plasma membrane organization: results of biophysical approaches,” Biochim. Biophys. Acta 1664, 119-131 (2004).
[CrossRef]

Schwille, P.

N. Kahya, D. Scherfeld, K. Bacia, B. Poolman, and P. Schwille, “Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy,” J. Biol. Chem. 278, 28109-28115 (2003).
[CrossRef]

K. Bacia, I. V. Majoul, and P. Schwille, “Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis,” Biophys. J. 83, 1184-1193 (2002).

Selvin, P. R.

S. Syed, G. E. Snyder, C. Franzini-Armstrong, P. R. Selvin, and Y. E. Goldman, “Adaptability of myosin V by simultaneous detection of position and orientation,” EMBO J. 25, 1795-1803 (2006).
[CrossRef]

Sens, R.

R. Sens and K. H. Drexhage, “Fluorescence quantum yield of oxazine and carbazine laser dyes,” J. Lumin. 24/25, 709-712(1981).
[CrossRef]

Shaw, M. A.

J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. T. Corre, and Y. E. Goldman, “Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization,” Nature 422, 399-404 (2003).
[CrossRef]

Shih, W. M.

W. M. Shih, Z. Gryczynski, J. R. Lakowicz, and J. A. Spudich, “A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin,” Cell 102, 683-694 (2000).
[CrossRef]

Siegel, J.

Snyder, G. E.

S. Syed, G. E. Snyder, C. Franzini-Armstrong, P. R. Selvin, and Y. E. Goldman, “Adaptability of myosin V by simultaneous detection of position and orientation,” EMBO J. 25, 1795-1803 (2006).
[CrossRef]

Spaink, H. P.

P. H. Lommerse, H. P. Spaink, and T. Schmidt, “In vivo plasma membrane organization: results of biophysical approaches,” Biochim. Biophys. Acta 1664, 119-131 (2004).
[CrossRef]

Spudich, J. A.

W. M. Shih, Z. Gryczynski, J. R. Lakowicz, and J. A. Spudich, “A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin,” Cell 102, 683-694 (2000).
[CrossRef]

Squire, A.

A. Squire, J. Verveer, O. Rocks, and P. I. Bastiaens, “Red-edge anisotropy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells,” J. Struct. Biol. 147, 62-69 (2004).
[CrossRef]

A. Squire, P. I. H. Bastiaens, “Three dimensional image restoration in fluorescence lifetime imaging microscopy,” J. Microsc. 193, 36-49 (1999).
[CrossRef]

Subramaniam, V.

A. H. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, “Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM),” Biophys. J. 83, 1631-1649 (2002).

Suhling, K.

Syed, S.

S. Syed, G. E. Snyder, C. Franzini-Armstrong, P. R. Selvin, and Y. E. Goldman, “Adaptability of myosin V by simultaneous detection of position and orientation,” EMBO J. 25, 1795-1803 (2006).
[CrossRef]

Tanizaki, Y.

Y. Tanizaki, “The correction of the relation of the optical density ratio to the stretch ratio to the dichroic spectra,” Bull. Chem. Soc. Japan 38, 1798-1799 (1965).
[CrossRef]

Y. Tanizaki, “Dichroizm of dyes in the stretched PVA sheet. II. The relation between the optical density ratio and the stretch ratio, and an attempt to analyze relative directions of absorption bands,” Bull. Chem. Soc. Japan 32, 75-80(1959).
[CrossRef]

Thompson, R. B.

R. B. Thompson, I. Gryczynski, and J. Malicka, “Fluorescence polarization standards for high-throughput screening and imaging,” BioTechniques 32, 37-38, 40, 42, (2002).

Verkman, A. S.

J. A. Dix and A. S. Verkman, “Mapping of fluorescence anisotropy in living cells by ratio imaging,” Biophys. J. 57, 231-240 (1990).

Verveer, J.

A. Squire, J. Verveer, O. Rocks, and P. I. Bastiaens, “Red-edge anisotropy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells,” J. Struct. Biol. 147, 62-69 (2004).
[CrossRef]

Walter, N. G.

X. Zhuang, H. Kim, M. J. Pereira, H. P. Babcock, N. G. Walter, and S. Chu, “Correlating structural dynamics and function in single ribozyme molecules,” Science 296, 1473-1476 (2002).
[CrossRef]

Webb, S. E.

Wiczk, W.

A. P. Demchenko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and M. Fishman, “Intramolecular dynamics in the environment of the single tryptophan residue in staphylococcal nuclease,” Biophys. Chem. 48, 39-48 (1993).
[CrossRef]

Wouters, F. S.

A. G. Harpur, F. S. Wouters, and P. I. H. Bastiaens, “Imaging FRET between spectrally similar GFP molecules in a single cells,” Nat. Biotechnol. 19, 167-169 (2001).
[CrossRef]

Zhuang, X.

X. Zhuang, H. Kim, M. J. Pereira, H. P. Babcock, N. G. Walter, and S. Chu, “Correlating structural dynamics and function in single ribozyme molecules,” Science 296, 1473-1476 (2002).
[CrossRef]

Ann. Phys.

T. Förster, “Intermolecular energy migration and fluorescence,” Ann. Phys. 2, 55-75 (1948).

Asian J. Spectroscopy

A. Kawski and P. Bojarski, “Photoselection of luminescent molecules in isotropic and anisotropic media by multiphoton excitation. Electronic transition moment directions,” Asian J. Spectroscopy 11, 67-94 (2007).

Biochim. Biophys. Acta

P. H. Lommerse, H. P. Spaink, and T. Schmidt, “In vivo plasma membrane organization: results of biophysical approaches,” Biochim. Biophys. Acta 1664, 119-131 (2004).
[CrossRef]

Biophys. Chem.

A. P. Demchenko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and M. Fishman, “Intramolecular dynamics in the environment of the single tryptophan residue in staphylococcal nuclease,” Biophys. Chem. 48, 39-48 (1993).
[CrossRef]

Z. Gryczynski and E. Bucci, “A new front-face optical cell for measuring weak fluorescent emissions with time resolution in the picosecond time scale,” Biophys. Chem. 48, 31-38 (1993).
[CrossRef]

Biophys. J.

J. A. Dix and A. S. Verkman, “Mapping of fluorescence anisotropy in living cells by ratio imaging,” Biophys. J. 57, 231-240 (1990).

A. H. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, “Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM),” Biophys. J. 83, 1631-1649 (2002).

K. Bacia, I. V. Majoul, and P. Schwille, “Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis,” Biophys. J. 83, 1184-1193 (2002).

S. Hohng, C. Joo, and T. Ha, “Single-molecule three-color FRET,” Biophys. J. 87, 1328-1337 (2004).
[CrossRef]

G. Mariott, R. M. Clegg, D. J. Arndt-Jovin, and T. M. Jovin, “Time resolved imaging microscopy, phosphorescence, and delayed fluorescence imaging,” Biophys. J. 60, 1374-1387 (1991).

I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126-2136 (2004).
[CrossRef]

D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26, 557-573 (1979).

Biopolymers

C. Horcssler, B. Hardy, and E. Fredericq, “Interaction of ethidium bromide with DNA. Optical and electrooptical study,” Biopolymers 13, 1144-1160 (1974).

BioTechniques

R. B. Thompson, I. Gryczynski, and J. Malicka, “Fluorescence polarization standards for high-throughput screening and imaging,” BioTechniques 32, 37-38, 40, 42, (2002).

Bull. Chem. Soc. Japan

Y. Tanizaki, “Dichroizm of dyes in the stretched PVA sheet. II. The relation between the optical density ratio and the stretch ratio, and an attempt to analyze relative directions of absorption bands,” Bull. Chem. Soc. Japan 32, 75-80(1959).
[CrossRef]

Y. Tanizaki, “The correction of the relation of the optical density ratio to the stretch ratio to the dichroic spectra,” Bull. Chem. Soc. Japan 38, 1798-1799 (1965).
[CrossRef]

Cell

W. M. Shih, Z. Gryczynski, J. R. Lakowicz, and J. A. Spudich, “A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin,” Cell 102, 683-694 (2000).
[CrossRef]

EMBO J.

S. Syed, G. E. Snyder, C. Franzini-Armstrong, P. R. Selvin, and Y. E. Goldman, “Adaptability of myosin V by simultaneous detection of position and orientation,” EMBO J. 25, 1795-1803 (2006).
[CrossRef]

J. Biol. Chem.

N. Kahya, D. Scherfeld, K. Bacia, B. Poolman, and P. Schwille, “Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy,” J. Biol. Chem. 278, 28109-28115 (2003).
[CrossRef]

J. Lumin.

R. Sens and K. H. Drexhage, “Fluorescence quantum yield of oxazine and carbazine laser dyes,” J. Lumin. 24/25, 709-712(1981).
[CrossRef]

J. Microsc.

A. Squire, P. I. H. Bastiaens, “Three dimensional image restoration in fluorescence lifetime imaging microscopy,” J. Microsc. 193, 36-49 (1999).
[CrossRef]

J. Phys. Chem.

Y. Matsuoka, “Film dichroism. 4. Linear dichroism study of orientation behavior of planar molecules in stretched poly(viny1 alcohol) film,” J. Phys. Chem. 84, 1361-1366 (1980).
[CrossRef]

J. Struct. Biol.

A. Squire, J. Verveer, O. Rocks, and P. I. Bastiaens, “Red-edge anisotropy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells,” J. Struct. Biol. 147, 62-69 (2004).
[CrossRef]

Methods Cell Biol.

D. W. Piston and M. Rizzo, “FRET by fluorescence polarization microscopy,” Methods Cell Biol. 85, 415-430.
[CrossRef]

Methods Enzymol.

R. M. Clegg, “Fluorescence resonance energy transfer and nucleic acids,” Methods Enzymol. 211, 353-388 (1992).
[CrossRef]

Methods Mol. Biol.

A. Periasamy, M. Elangovan, E. Elliott, and D. L. Brautigan, “Fluorescence lifetime imaging (FLIM) of green fluorescent fusion proteins in living cells,” Methods Mol. Biol. 183, 89-100 (2002).

Nat. Biotechnol.

A. G. Harpur, F. S. Wouters, and P. I. H. Bastiaens, “Imaging FRET between spectrally similar GFP molecules in a single cells,” Nat. Biotechnol. 19, 167-169 (2001).
[CrossRef]

Nature

J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. T. Corre, and Y. E. Goldman, “Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization,” Nature 422, 399-404 (2003).
[CrossRef]

Opt. Lett.

Photochem. Photobiol.

A. Kawski, “Excitation energy transfer and its manifestation in isotropic media,” Photochem. Photobiol. 38, 487-508 (1983).
[CrossRef]

Z. Gryczynski, E. Bucci, and J. Kusba, “Linear dichroism study of metalloporphyrin transition moments in view of radiationless interactions with tryptophan in hemoproteins,” Photochem. Photobiol. 58, 492-498 (1993).
[CrossRef]

Science

X. Zhuang, H. Kim, M. J. Pereira, H. P. Babcock, N. G. Walter, and S. Chu, “Correlating structural dynamics and function in single ribozyme molecules,” Science 296, 1473-1476 (2002).
[CrossRef]

Z. Naturforsch

A. Kawski and Z. Gryczynski, “On the determination of transition-moment directions from emission anisotropy measurements,” Z. Naturforsch 42a, 617-621 (1987).

Z. Naturforsch. A

A. Kawski and Z. Gryczynski, “Determination of the transition-moment directions from photoselection in partially oriented systems,” Z. Naturforsch. A 42a, 808-812(1987).

A. Kawski and Z. Gryczynski, “Relation between the emission anisotropy and the dichroic ratio for solute alignment in streached polymer films,” Z. Naturforsch. A 42a, 1396-1398(1987).

A. Kawski and Z. Gryczynski, “On the determination of transition-moment directions from emission anisotropy measurements,” Z. Naturforsch. A 41a, 1195-1199 (1986).

Other

J. R. Lakowicz, “Fluorescence correlation spectroscopy,” in Principles of Fluorescence Spectroscopy (Springer, 2006), pp. 797-840.

Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Basics of fluorescence and FRET,” in Molecular Imaging, FRET Microscopy and Spectroscopy, A. Periasamy and N. R. Day, eds. (Oxford, 2005), pp. 21-56.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Geometry of photoselection: P, polarization filter; A and A , absorbances of light measured parallel and perpendicular to stretching direction, respectively; ω 1 and ω, angles between orientation axis z and transition dipole moments for absorption A and long axis of molecule OM , respectively; φ, angle between transition dipole moment A and molecular axis OM ; δ, angle formed by the planes ( z , OM ) and ( z , A ) . (b) Geometry of dichroic calculations: ε , polarized electric vector of excitation light; P, projection of the polarization filter; I and I , intensities of emission light measured parallel and perpendicular to the incidence polarization, respectively; ω 1 and ω 2 , angles between the photoselection axis z and the transition dipole moments for absorption A and emission E , respectively; β, angle between transition dipole moments A and E ; δ, angle formed by the planes ( z , A ) and ( E , A ) .

Fig. 2
Fig. 2

Chemical structure of NIR fluorophore LDS 798.

Fig. 3
Fig. 3

Normalized absorption and emission spectra LDS 798 in isotropic (unstretched) PVA film shown as solid and dotted line, respectively. Filled and empty points present anisotropy data for excitation (observed at 750 nm ) and emission (excitation at 635 nm ) fluorescence, respectively.

Fig. 4
Fig. 4

Parallel (—) and perpendicular (- -) polarized absorption spectra of LDS 798 recorded for different values of stretching ratio R S .

Fig. 5
Fig. 5

Dependence of dichroic ratio R d on stretching ratio R S for LDS 798-doped PVA films. Symbols correspond to experimental data and the continuous line corresponds to the theoretical values obtained for φ = 0 ° in Eq. (15). The error bars for R S were estimated with the assumption of 0.2 mm accuracy in the length measurements.

Fig. 6
Fig. 6

Experimental points and theoretical prediction for the dependence of the absorption anisotropy K ( R S , φ ) on the stretching ratio R S for LDS 798-doped PVA films. The theoretical line was calculated from Eq. (13) with the assumption φ = 0 ° .

Fig. 7
Fig. 7

(a) Photograph of stretched LDS 798-doped PVA film. (b) Intensities of fluorescence emission observed for four different angles (0, 45, 70, and 90 ° ) relative to the stretching direction of the PVA film.

Fig. 8
Fig. 8

Images observed for highly stretched PVA film with LDS 798 for two different polarizations, (a) perpendicular and (b) parallel.

Fig. 9
Fig. 9

Dependence of the emission anisotropy r (and polarization P) on the dichroic ratio R d determined for stretched PVA films doped with LDS 798. Figure presents experimental data (points) and least square fit to them by using Eq. (14).

Fig. 10
Fig. 10

Fluorescence intensity decay of LDS 798-doped PVA film (isotropic). Excitation was 635 mm , observation was 750 mm .

Fig. 11
Fig. 11

Fluorescence intensities of polarized components observed for an isotropic sample of LDS 798-doped PVA film. The sample was rotated on the microscope stage and illuminated by high numerical aperture objective 1.2, 60 × OLYMPUS. To obtain a correct value of anisotropy (0.32, Fig. 3), the parallel component must be multiplied by a G factor of 1.16.

Fig. 12
Fig. 12

.a) Fluorescence intensity of a parallel component observed for the 8-fold stretched sample of LDS 798-doped PVA film, b) Perpendicular component of this sample. The sample was rotated on the microscope stage.

Tables (1)

Tables Icon

Table 1 Photophysical Characteristics of LDS 798-Doped PVA Film

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

R d ( λ ) = A ( λ ) A ( λ ) .
K ( λ ) = A ( λ ) - A ( λ ) A ( λ ) + 2 A ( λ ) = R d ( λ ) - 1 R d ( λ ) + 2 .
r ( λ ) = I V V ( λ ) - G ( λ ) I V H ( λ ) I V V ( λ ) + 2 G ( λ ) I V H ( λ ) ,
K ( ω , φ ) = 3 cos 2 ω 1 - 1 2 = ( 3 2 cos 2 ω - 1 2 ) ( 3 2 cos 2 φ - 1 2 ) ,
r ( ω 1 , β ) = 3 cos 2 ω 2 - 1 2 = ( 3 2 cos 2 ω 1 - 1 2 ) ( 3 2 cos 2 β - 1 2 ) ,
cos 2 ω = 0 π / 2 f ( ω ) cos 2 ω d ω 0 π / 2 f ( ω ) d ω ,
cos 2 ω 1 = 0 π / 2 f ( ω 1 ) cos 2 ω 1 d ω 1 0 π / 2 f ( ω 1 ) d ω 1 ,
f ( ω ) = R S 2 sin ω [ 1 + ( R S 2 - 1 ) sin 2 ω ] - 3 / 2 ,
f ( ω 1 ) = R S 2 sin ω 1 cos 2 ω 1 [ 1 + ( R S 2 - 1 ) sin 2 ω 1 ] - 3 / 2 .
cos 2 ω = 1 0 R S 2 x 2 d x ( R 2 - 1 ) 3 / 2 ( a 2 - x 2 ) 3 / 2 1 0 R S 2 d x ( R 2 - 1 ) 3 / 2 ( a 2 - x 2 ) 3 / 2 ,
cos 2 ω 1 = 0 π / 2 R S 2 sin ω 1 cos 4 ω 1 [ 1 + ( R 2 - 1 ) sin 2 ω 1 ) ] - 3 / 2 d ω 1 0 π / 2 R S 2 sin ω 1 cos 2 ω 1 [ 1 + ( R S 2 - 1 ) sin 2 ω 1 ] - 3 / 2 d ω 1 ,
cos 2 ω 1 = 1 0 R S 2 y 4 d y ( R 2 - 1 ) 3 / 2 ( a 2 - y 2 ) 3 / 2 1 0 R S 2 y 2 d y ( R 2 - 1 ) 3 / 2 ( a 2 - y 2 ) 3 / 2 .
K ( φ , R S ) = { 3 2 a 2 [ 1 - ( a 2 - 1 ) 1 / 2 arcsin ( 1 / a ) ] - 1 2 } ( 3 2 cos 2 φ - 1 2 ) ,
r ( β , R S ) = [ 3 2 ( a 2 - 1 ) 1 / 2 + 2 a 2 ( a 2 - 1 ) - 1 / 2 - 3 a 2 arcsin ( 1 a ) 2 ( a 2 - 1 ) - 1 / 2 - 2 arcsin ( 1 a ) - 1 2 ] ( 3 2 cos 2 β - 1 2 ) .
R d = 2 1 + a 2 [ 1 - ( a 2 - 1 ) 0.5 arcsin ( 1 / a ) ] ( 3 cos 2 φ - 1 ) - cos 2 φ 1 - a 2 [ 1 - ( a 2 - 1 ) 0.5 arcsin ( 1 / a ) ] ( 3 cos 2 φ - 1 ) + cos 2 φ .

Metrics