Abstract

A metal-mesh achromatic half-wave plate (HWP) has been designed, manufactured, and tested for potential use in millimeter and submillimeter astronomical instruments. The prototype device presented here is based on a 12-grid Shatrow [IEEE Trans. Antennas Propag. 43, 109 (1995)] recipe to operate over the frequency range of 120180GHz. Transmission line modeling and finite-element analysis [Ansoft HFSS website: http://www.ansoft.com/hfss/] were used to optimize the design geometrical parameters in terms of the device transmission, reflection, absorption, phase-shift, and cross-polarization as a function of frequency. The resulting prototype device was constructed and characterized using incoherent radiation from a polarizing Fourier transform spectrometer to explore its frequency and polarization behavior. These measurements are shown to be in excellent agreement with the models. Lists of the achieved HWP performance characteristics are reported.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. North, for the Clover collaboration, “Detecting the B-mode polarisation of the CMB with Clover,” presented at the 43rd Rencontres de Moriond “Cosmology,” La Thuile, Italy, 2008.
  2. E. Collett, Polarized Light: Fundamentals and Applications (Marcel-Dekker, 1992).
  3. S. Pancharatnam, “Achromatic combinations of birefringent plates,” Memoir 71 (Raman Research Institute, 1955), pp. 137-144.
  4. G. Pisano, G. Savini, P. A. R. Ade, V. Haynes, and W. K. Gear, “Achromatic half-wave plate for submillimeter instruments in CMB astronomy: experimental characterization,” Appl. Opt. 45, 6982-6989 (2006).
    [CrossRef] [PubMed]
  5. G. Savini, G. Pisano, and P. A. R. Ade, “Achromatic half-wave plate for submillimeter instruments in CMB astronomy: modeling and simulation,” Appl. Opt. 45, 8907-8915 (2006).
    [CrossRef] [PubMed]
  6. P. Bastien, E. Bissonnette, P. Ade, G. Pisano, G. Savini, T. Jenness, D. Johnstone, and B. Matthews, “POL-2: A polarimeter for SCUBA-2,” J. R. Astron. Soc. Can. , 99, 133 (2005).
  7. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure, Infrared Phys. 7, 37-50 (1967).
    [CrossRef]
  8. P. A. R. Ade, G. Pisano, C. Tucker, and S. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
    [CrossRef]
  9. C. Tucker and P. A. R. Ade, “Thermal filtering for large aperture cryogenic detector arrays,” Proc. SPIE 6275, 62750T (2006).
    [CrossRef]
  10. N. Marcuvitz, Waveguide Handbook, MIT Radiation Laboratory Series (McGraw-Hill, 1951), pp. 280-290.
  11. C. C. Chen, “Transmission through a conducting screen perforated periodically with apertures,” IEEE Trans. Microwave Theory Tech. MTT-18, 627-632 (1970).
    [CrossRef]
  12. M. Bozzi and L. Perregrini, “Analysis of multilayered printed frequency selective surfaces by the MoM/BIRME method,” IEEE Trans. Antennas Propag. 51, 2830-2836 (2003).
    [CrossRef]
  13. Ansoft HFSS website: http://www.ansoft.com/hfss/.
  14. G. Pisano, P. A. R. Ade, and S. Weaver, “Polarization effects investigations in quasi-optical metal grid filters,” Infrared Phys. Technol. 48, 89-100 (2006).
    [CrossRef]
  15. D. S. Lerner, “A wave polarization converter for circular polarization,” IEEE Trans. Antennas Propag. 15, 3-7 (1964).
  16. A. D. Shatrow, A. D. Chuprin, and A. N. Sivov, “Constructing the phase converters consisting of arbitrary number of translucent surfaces,” IEEE Trans. Antennas Propag. 43, 109-113 (1995).
    [CrossRef]
  17. S. Adachi and E. M. Kennaugh, “The Analysis of a broad-band circular polarizer including interface reflections,” IRE Trans. Microwave Theory Tech. 8, 520-525 (1960).
    [CrossRef]
  18. Emerson & Cuming Microwave Products, http://www.eccosorb.com/.

2006

P. A. R. Ade, G. Pisano, C. Tucker, and S. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
[CrossRef]

C. Tucker and P. A. R. Ade, “Thermal filtering for large aperture cryogenic detector arrays,” Proc. SPIE 6275, 62750T (2006).
[CrossRef]

G. Pisano, P. A. R. Ade, and S. Weaver, “Polarization effects investigations in quasi-optical metal grid filters,” Infrared Phys. Technol. 48, 89-100 (2006).
[CrossRef]

G. Pisano, G. Savini, P. A. R. Ade, V. Haynes, and W. K. Gear, “Achromatic half-wave plate for submillimeter instruments in CMB astronomy: experimental characterization,” Appl. Opt. 45, 6982-6989 (2006).
[CrossRef] [PubMed]

G. Savini, G. Pisano, and P. A. R. Ade, “Achromatic half-wave plate for submillimeter instruments in CMB astronomy: modeling and simulation,” Appl. Opt. 45, 8907-8915 (2006).
[CrossRef] [PubMed]

2005

P. Bastien, E. Bissonnette, P. Ade, G. Pisano, G. Savini, T. Jenness, D. Johnstone, and B. Matthews, “POL-2: A polarimeter for SCUBA-2,” J. R. Astron. Soc. Can. , 99, 133 (2005).

2003

M. Bozzi and L. Perregrini, “Analysis of multilayered printed frequency selective surfaces by the MoM/BIRME method,” IEEE Trans. Antennas Propag. 51, 2830-2836 (2003).
[CrossRef]

1995

A. D. Shatrow, A. D. Chuprin, and A. N. Sivov, “Constructing the phase converters consisting of arbitrary number of translucent surfaces,” IEEE Trans. Antennas Propag. 43, 109-113 (1995).
[CrossRef]

1970

C. C. Chen, “Transmission through a conducting screen perforated periodically with apertures,” IEEE Trans. Microwave Theory Tech. MTT-18, 627-632 (1970).
[CrossRef]

1967

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure, Infrared Phys. 7, 37-50 (1967).
[CrossRef]

1964

D. S. Lerner, “A wave polarization converter for circular polarization,” IEEE Trans. Antennas Propag. 15, 3-7 (1964).

1960

S. Adachi and E. M. Kennaugh, “The Analysis of a broad-band circular polarizer including interface reflections,” IRE Trans. Microwave Theory Tech. 8, 520-525 (1960).
[CrossRef]

Adachi, S.

S. Adachi and E. M. Kennaugh, “The Analysis of a broad-band circular polarizer including interface reflections,” IRE Trans. Microwave Theory Tech. 8, 520-525 (1960).
[CrossRef]

Ade, P.

P. Bastien, E. Bissonnette, P. Ade, G. Pisano, G. Savini, T. Jenness, D. Johnstone, and B. Matthews, “POL-2: A polarimeter for SCUBA-2,” J. R. Astron. Soc. Can. , 99, 133 (2005).

Ade, P. A. R.

C. Tucker and P. A. R. Ade, “Thermal filtering for large aperture cryogenic detector arrays,” Proc. SPIE 6275, 62750T (2006).
[CrossRef]

G. Savini, G. Pisano, and P. A. R. Ade, “Achromatic half-wave plate for submillimeter instruments in CMB astronomy: modeling and simulation,” Appl. Opt. 45, 8907-8915 (2006).
[CrossRef] [PubMed]

G. Pisano, P. A. R. Ade, and S. Weaver, “Polarization effects investigations in quasi-optical metal grid filters,” Infrared Phys. Technol. 48, 89-100 (2006).
[CrossRef]

G. Pisano, G. Savini, P. A. R. Ade, V. Haynes, and W. K. Gear, “Achromatic half-wave plate for submillimeter instruments in CMB astronomy: experimental characterization,” Appl. Opt. 45, 6982-6989 (2006).
[CrossRef] [PubMed]

P. A. R. Ade, G. Pisano, C. Tucker, and S. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
[CrossRef]

Bastien, P.

P. Bastien, E. Bissonnette, P. Ade, G. Pisano, G. Savini, T. Jenness, D. Johnstone, and B. Matthews, “POL-2: A polarimeter for SCUBA-2,” J. R. Astron. Soc. Can. , 99, 133 (2005).

Bissonnette, E.

P. Bastien, E. Bissonnette, P. Ade, G. Pisano, G. Savini, T. Jenness, D. Johnstone, and B. Matthews, “POL-2: A polarimeter for SCUBA-2,” J. R. Astron. Soc. Can. , 99, 133 (2005).

Bozzi, M.

M. Bozzi and L. Perregrini, “Analysis of multilayered printed frequency selective surfaces by the MoM/BIRME method,” IEEE Trans. Antennas Propag. 51, 2830-2836 (2003).
[CrossRef]

Chen, C. C.

C. C. Chen, “Transmission through a conducting screen perforated periodically with apertures,” IEEE Trans. Microwave Theory Tech. MTT-18, 627-632 (1970).
[CrossRef]

Chuprin, A. D.

A. D. Shatrow, A. D. Chuprin, and A. N. Sivov, “Constructing the phase converters consisting of arbitrary number of translucent surfaces,” IEEE Trans. Antennas Propag. 43, 109-113 (1995).
[CrossRef]

Collett, E.

E. Collett, Polarized Light: Fundamentals and Applications (Marcel-Dekker, 1992).

Gear, W. K.

Haynes, V.

Jenness, T.

P. Bastien, E. Bissonnette, P. Ade, G. Pisano, G. Savini, T. Jenness, D. Johnstone, and B. Matthews, “POL-2: A polarimeter for SCUBA-2,” J. R. Astron. Soc. Can. , 99, 133 (2005).

Johnstone, D.

P. Bastien, E. Bissonnette, P. Ade, G. Pisano, G. Savini, T. Jenness, D. Johnstone, and B. Matthews, “POL-2: A polarimeter for SCUBA-2,” J. R. Astron. Soc. Can. , 99, 133 (2005).

Kennaugh, E. M.

S. Adachi and E. M. Kennaugh, “The Analysis of a broad-band circular polarizer including interface reflections,” IRE Trans. Microwave Theory Tech. 8, 520-525 (1960).
[CrossRef]

Lerner, D. S.

D. S. Lerner, “A wave polarization converter for circular polarization,” IEEE Trans. Antennas Propag. 15, 3-7 (1964).

Marcuvitz, N.

N. Marcuvitz, Waveguide Handbook, MIT Radiation Laboratory Series (McGraw-Hill, 1951), pp. 280-290.

Matthews, B.

P. Bastien, E. Bissonnette, P. Ade, G. Pisano, G. Savini, T. Jenness, D. Johnstone, and B. Matthews, “POL-2: A polarimeter for SCUBA-2,” J. R. Astron. Soc. Can. , 99, 133 (2005).

North, C. E.

C. E. North, for the Clover collaboration, “Detecting the B-mode polarisation of the CMB with Clover,” presented at the 43rd Rencontres de Moriond “Cosmology,” La Thuile, Italy, 2008.

Pancharatnam, S.

S. Pancharatnam, “Achromatic combinations of birefringent plates,” Memoir 71 (Raman Research Institute, 1955), pp. 137-144.

Perregrini, L.

M. Bozzi and L. Perregrini, “Analysis of multilayered printed frequency selective surfaces by the MoM/BIRME method,” IEEE Trans. Antennas Propag. 51, 2830-2836 (2003).
[CrossRef]

Pisano, G.

G. Savini, G. Pisano, and P. A. R. Ade, “Achromatic half-wave plate for submillimeter instruments in CMB astronomy: modeling and simulation,” Appl. Opt. 45, 8907-8915 (2006).
[CrossRef] [PubMed]

G. Pisano, P. A. R. Ade, and S. Weaver, “Polarization effects investigations in quasi-optical metal grid filters,” Infrared Phys. Technol. 48, 89-100 (2006).
[CrossRef]

G. Pisano, G. Savini, P. A. R. Ade, V. Haynes, and W. K. Gear, “Achromatic half-wave plate for submillimeter instruments in CMB astronomy: experimental characterization,” Appl. Opt. 45, 6982-6989 (2006).
[CrossRef] [PubMed]

P. A. R. Ade, G. Pisano, C. Tucker, and S. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
[CrossRef]

P. Bastien, E. Bissonnette, P. Ade, G. Pisano, G. Savini, T. Jenness, D. Johnstone, and B. Matthews, “POL-2: A polarimeter for SCUBA-2,” J. R. Astron. Soc. Can. , 99, 133 (2005).

Savini, G.

Shatrow, A. D.

A. D. Shatrow, A. D. Chuprin, and A. N. Sivov, “Constructing the phase converters consisting of arbitrary number of translucent surfaces,” IEEE Trans. Antennas Propag. 43, 109-113 (1995).
[CrossRef]

Sivov, A. N.

A. D. Shatrow, A. D. Chuprin, and A. N. Sivov, “Constructing the phase converters consisting of arbitrary number of translucent surfaces,” IEEE Trans. Antennas Propag. 43, 109-113 (1995).
[CrossRef]

Tucker, C.

C. Tucker and P. A. R. Ade, “Thermal filtering for large aperture cryogenic detector arrays,” Proc. SPIE 6275, 62750T (2006).
[CrossRef]

P. A. R. Ade, G. Pisano, C. Tucker, and S. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
[CrossRef]

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure, Infrared Phys. 7, 37-50 (1967).
[CrossRef]

Weaver, S.

P. A. R. Ade, G. Pisano, C. Tucker, and S. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
[CrossRef]

G. Pisano, P. A. R. Ade, and S. Weaver, “Polarization effects investigations in quasi-optical metal grid filters,” Infrared Phys. Technol. 48, 89-100 (2006).
[CrossRef]

Appl. Opt.

IEEE Trans. Antennas Propag.

D. S. Lerner, “A wave polarization converter for circular polarization,” IEEE Trans. Antennas Propag. 15, 3-7 (1964).

A. D. Shatrow, A. D. Chuprin, and A. N. Sivov, “Constructing the phase converters consisting of arbitrary number of translucent surfaces,” IEEE Trans. Antennas Propag. 43, 109-113 (1995).
[CrossRef]

M. Bozzi and L. Perregrini, “Analysis of multilayered printed frequency selective surfaces by the MoM/BIRME method,” IEEE Trans. Antennas Propag. 51, 2830-2836 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

C. C. Chen, “Transmission through a conducting screen perforated periodically with apertures,” IEEE Trans. Microwave Theory Tech. MTT-18, 627-632 (1970).
[CrossRef]

Infrared Phys.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure, Infrared Phys. 7, 37-50 (1967).
[CrossRef]

Infrared Phys. Technol.

G. Pisano, P. A. R. Ade, and S. Weaver, “Polarization effects investigations in quasi-optical metal grid filters,” Infrared Phys. Technol. 48, 89-100 (2006).
[CrossRef]

IRE Trans. Microwave Theory Tech.

S. Adachi and E. M. Kennaugh, “The Analysis of a broad-band circular polarizer including interface reflections,” IRE Trans. Microwave Theory Tech. 8, 520-525 (1960).
[CrossRef]

J. R. Astron. Soc. Can.

P. Bastien, E. Bissonnette, P. Ade, G. Pisano, G. Savini, T. Jenness, D. Johnstone, and B. Matthews, “POL-2: A polarimeter for SCUBA-2,” J. R. Astron. Soc. Can. , 99, 133 (2005).

Proc. SPIE

P. A. R. Ade, G. Pisano, C. Tucker, and S. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
[CrossRef]

C. Tucker and P. A. R. Ade, “Thermal filtering for large aperture cryogenic detector arrays,” Proc. SPIE 6275, 62750T (2006).
[CrossRef]

Other

N. Marcuvitz, Waveguide Handbook, MIT Radiation Laboratory Series (McGraw-Hill, 1951), pp. 280-290.

Ansoft HFSS website: http://www.ansoft.com/hfss/.

Emerson & Cuming Microwave Products, http://www.eccosorb.com/.

C. E. North, for the Clover collaboration, “Detecting the B-mode polarisation of the CMB with Clover,” presented at the 43rd Rencontres de Moriond “Cosmology,” La Thuile, Italy, 2008.

E. Collett, Polarized Light: Fundamentals and Applications (Marcel-Dekker, 1992).

S. Pancharatnam, “Achromatic combinations of birefringent plates,” Memoir 71 (Raman Research Institute, 1955), pp. 137-144.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Example of a retarder made with three capacitive and three inductive grids.

Fig. 2
Fig. 2

Free-space approximate transmission line equivalent circuits for the device in Fig. 1.

Fig. 3
Fig. 3

Transmission line circuits used to model the 12-grid HWP.

Fig. 4
Fig. 4

Pictures of the two sets of grids 6 - C and 6 - L of the 150 GHz HWP prototype. The internal diameter of the rings is 30 mm .

Fig. 5
Fig. 5

Measurement and model results for the fast-axis transmission versus frequency in the ϑ 0 setup.

Fig. 6
Fig. 6

Measurement and model results for the slow-axis transmission versus frequency in the ϑ 90 setup.

Fig. 7
Fig. 7

Expected principal axes transmission phase shifts and overall phase difference.

Fig. 8
Fig. 8

Expected reflection and absorption of the fast axis.

Fig. 9
Fig. 9

Expected reflection and absorption of the slow axis.

Fig. 10
Fig. 10

Measurement and model results for the cross-polarization versus frequency in the ϑ 45 setup.

Tables (1)

Tables Icon

Table 1 Mesh HWP Band Average Performance Parameters

Metrics