Abstract

An amplification process was investigated in the third stimulated Raman scattering (SRS) line of H2 excited with a 266nm laser beam generated from the fourth harmonic of a Nd:YAG laser. The unexpected intensity enhancement observed at the third Stokes SRS line around 397.8nm is attributed to the seeding of the self-generated H-ε Balmer line at 397nm of atomic hydrogen by pumping the H2 molecule with a high-energy laser pulse at 266nm. It is worth mentioning that in our case the SRS spectrum of H2 showed a quite different intensity pattern from the usual SRS spectra of hydrogen. The pulse energy and pressure dependence of all the SRS lines in general and the third Stokes SRS line in particular were investigated, and in all respects the amplified SRS line at 397.8nm manifested completely different characteristics that have not been reported in previous publications. The conversion efficiency (CE) of all the SRS lines in the hydrogen 266nm SRS spectrum was also estimated, and 36% CE was achieved at the 397.78nm line. To support our claim for amplification at the third Stokes line by seeding of the H-ε Balmer line of atomic hydrogen, a comparative study was also carried out by pumping hydrogen gas with 355nm (less energy per photon) and 266nm laser beams. It is worth noting that amplification of the third Stokes SRS line was observed only with the 266nm pump laser, where dissociation of H2 and excitation of atomic hydrogen take place, and not with the 355nm pump laser.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850-1852 (1963).
    [CrossRef]
  2. C.-S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482-494 (1969).
    [CrossRef]
  3. R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser stimulated Raman effect and resonant four photon interactions in gases H2, D2 and CH4,” Appl. Phys. Lett. 3, 181-184 (1963).
    [CrossRef]
  4. V. Krylov, A. Rabane, O. Ollikainen, D. Erni, U. Wild, V. Bespelov, and D. Staselko, “Stimulated Raman scattering in hydrogen by frequency-doubled amplified femtosecond Ti:sapphire laser pulses,” Opt. Lett. 21, 381-83 (1996).
    [CrossRef] [PubMed]
  5. G. V. Venkin and G. M. Mikheev, “Stimulated Raman spectroscopy of excited states of the hydrogen molecule,” Sov. J. Quantum Electron. 15, 257-259 (1985).
    [CrossRef]
  6. F. Benapid, G. Antonopoulos, J. C. Knight, P. J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
    [CrossRef]
  7. Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitgawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000).
    [CrossRef]
  8. I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, “High-energy conversion efficiency of transient stimulated Raman scattering in methane pumped by the fundamental of a femtosecond Ti:sapphire laser,” Opt. Lett. 24, 1308-1310 (1999).
    [CrossRef]
  9. J. L. Carlsten, J. M. Telle, and R. G. Wenzel, “Efficient stimulated Raman scattering due to absence of second Stokes growth,” Opt. Lett. 9, 353-355 (1984).
    [CrossRef] [PubMed]
  10. P. Falsini, R. Pini, R. Salimbeni, M. Vannini, A. F. M. Y. Haider, and P. Buffa, “Simple and efficient H2 Raman conversion of a XeCl laser with a variable numerical aperture coupling geometry,” Opt. Commun. 53, 421-424 (1985).
    [CrossRef]
  11. D. W. Trainor, H. A. Hyman, and R. M. Heinricks, “Stimulated Raman scattering of XeF laser radiation in H2,” IEEE J. Quantum Electron. 18, 1929-1934 (1982).
    [CrossRef]
  12. S. F. Fulghum, D. W. Trainor, C. Duzy, and H. A. Hyman“Stimulated Raman scattering of XeF* laser radiation in H2--Part II,” IEEE J. Quantum Electron. 20, 218-222 (1984).
    [CrossRef]
  13. V. Yu. Baranov, V. M. Barisov, A. Yu. Vinokhodov, Yu. B. Kiryukhin, and Yu. Yu. Stepanov, “Stimulated Raman scattering of radiation from an electric discharge pulse-periodic XeCl laser in H2,” Sov. J. Quantum Electron. 15, 727-729 (1985).
    [CrossRef]
  14. S. V. Melchenko, A. N. Panchenko, and V. F. Tarasenko, “High power Raman conversion of the discharge XeCl laser,” Opt. Commun. 56, 51-52 (1985).
    [CrossRef]
  15. X. Cheng, Q. Lou, R. Wang, and Z. Wang, “Efficient XeCl/H2 Raman shifting to a blue-green region,” Appl. Phys. Lett. 51, 76-77 (1987).
    [CrossRef]
  16. D. A. Haner and I. S. McDermid, “Stimulated Raman shifting of Nd:YAG fourth harmonic (266 nm) in H2, HD, D2,” IEEE J. Quantum Electron. 26, 1292-1298 (1990).
    [CrossRef]
  17. G. B. Jarvis, S. Mathew, and J. E. Kenny, “Evaluation of Nd:YAG pumped Raman shifter as a broad spectrum light source,” Appl. Opt. 33, 4938-4946 (1994).
    [CrossRef] [PubMed]
  18. M. A. Gondal, “Laser photoacoustic spectrometer for remote monitoring of atmospheric pollutants,” Appl. Opt. 36, 3195-3201 (1997).
    [CrossRef] [PubMed]
  19. M. A. Gondal, A. Dastageer, Z. H. Yamani, and A. Arfaj, “Investigation of stimulated Raman scattering of v1 and v2 modes in CH4,” Chem. Phys. Lett. 377, 249-255(2003).
    [CrossRef]
  20. M. A. Gondal, J. Mastromarino, and U. K. A. Klein, “Laser Doppler velocimeter for remote measurement of polluted water and aerosols discharges,” Opt. Lasers Eng. 38, 589-600(2002).
    [CrossRef]
  21. M. A. Gondal and J. Mastromarino, “Lidar system for remote environmental studies,” Talanta 53, 147-154(2000).
    [CrossRef]
  22. M. A. Gondal and J. Mastromarino, “Pulsed laser photoacoustic detection of SO2 near 225.7 nm,” Appl. Opt. 40, 2010-2016(2001).
    [CrossRef]
  23. M. A. Gondal and A. Dastageer, “High sensitive detection of hazardous SO2 using 266 nm UV laser,” J. Environ. Sci. Health Part A 43 , 10 (2008).
    [CrossRef]
  24. M. A Gondal and Z. H. Yamani, “Highly sensitive electronically modulated photoacoustic spectrometer for ozone detection,” Appl. Opt. 46, 7083-7090 (2007).
    [CrossRef] [PubMed]
  25. M. A. Gondal, A. Dastageer, and I. A. Bakhtiari, “Laser based sensor for detection of hazardous gases in the air using waveguide CO2 laser,” J. Environ. Sci. Health Part A 42, 871-878(2007).
    [CrossRef]
  26. I. M. Tomov, P. Chen, and P. M. Rentzepis, “Efficient Raman conversion of high-repetition-rate, 193 nm picosecond laser-pulses,” J. Appl. Phys. 76, 1409-1412 (1994).
    [CrossRef]
  27. A. Sakoda, H. Mutoh, and K. Tsukiyama, “Effect of externally injected radiation on amplified spontaneous emission in CO,” Appl. Phys. B 72, 411-415 (2001).
  28. V. Krylov, A. Rabane, O. Ollikainen, D. Erni, U. Wild, V. Bespelov, and D. Staselko, “Femtosecond stimulated Raman scattering in pressurized gases in the ultraviolet and visible spectral ranges,” J. Opt. Soc. Am. B 15, 2910-2916(1998).
    [CrossRef]
  29. Z. Petrovic and V. Stojanovic, “Anomalous Doppler broadening of hydrogen lines due to excitation by fast neutrals in low pressure townsend discharge,” Mem. Soc. Astron. Ital. Suppl. 7, 172-177 (2005).

2008 (1)

M. A. Gondal and A. Dastageer, “High sensitive detection of hazardous SO2 using 266 nm UV laser,” J. Environ. Sci. Health Part A 43 , 10 (2008).
[CrossRef]

2007 (2)

M. A Gondal and Z. H. Yamani, “Highly sensitive electronically modulated photoacoustic spectrometer for ozone detection,” Appl. Opt. 46, 7083-7090 (2007).
[CrossRef] [PubMed]

M. A. Gondal, A. Dastageer, and I. A. Bakhtiari, “Laser based sensor for detection of hazardous gases in the air using waveguide CO2 laser,” J. Environ. Sci. Health Part A 42, 871-878(2007).
[CrossRef]

2005 (2)

F. Benapid, G. Antonopoulos, J. C. Knight, P. J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[CrossRef]

Z. Petrovic and V. Stojanovic, “Anomalous Doppler broadening of hydrogen lines due to excitation by fast neutrals in low pressure townsend discharge,” Mem. Soc. Astron. Ital. Suppl. 7, 172-177 (2005).

2003 (1)

M. A. Gondal, A. Dastageer, Z. H. Yamani, and A. Arfaj, “Investigation of stimulated Raman scattering of v1 and v2 modes in CH4,” Chem. Phys. Lett. 377, 249-255(2003).
[CrossRef]

2002 (1)

M. A. Gondal, J. Mastromarino, and U. K. A. Klein, “Laser Doppler velocimeter for remote measurement of polluted water and aerosols discharges,” Opt. Lasers Eng. 38, 589-600(2002).
[CrossRef]

2001 (2)

A. Sakoda, H. Mutoh, and K. Tsukiyama, “Effect of externally injected radiation on amplified spontaneous emission in CO,” Appl. Phys. B 72, 411-415 (2001).

M. A. Gondal and J. Mastromarino, “Pulsed laser photoacoustic detection of SO2 near 225.7 nm,” Appl. Opt. 40, 2010-2016(2001).
[CrossRef]

2000 (2)

M. A. Gondal and J. Mastromarino, “Lidar system for remote environmental studies,” Talanta 53, 147-154(2000).
[CrossRef]

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitgawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

1999 (1)

1998 (1)

1997 (1)

1996 (1)

1994 (2)

G. B. Jarvis, S. Mathew, and J. E. Kenny, “Evaluation of Nd:YAG pumped Raman shifter as a broad spectrum light source,” Appl. Opt. 33, 4938-4946 (1994).
[CrossRef] [PubMed]

I. M. Tomov, P. Chen, and P. M. Rentzepis, “Efficient Raman conversion of high-repetition-rate, 193 nm picosecond laser-pulses,” J. Appl. Phys. 76, 1409-1412 (1994).
[CrossRef]

1990 (1)

D. A. Haner and I. S. McDermid, “Stimulated Raman shifting of Nd:YAG fourth harmonic (266 nm) in H2, HD, D2,” IEEE J. Quantum Electron. 26, 1292-1298 (1990).
[CrossRef]

1987 (1)

X. Cheng, Q. Lou, R. Wang, and Z. Wang, “Efficient XeCl/H2 Raman shifting to a blue-green region,” Appl. Phys. Lett. 51, 76-77 (1987).
[CrossRef]

1985 (4)

V. Yu. Baranov, V. M. Barisov, A. Yu. Vinokhodov, Yu. B. Kiryukhin, and Yu. Yu. Stepanov, “Stimulated Raman scattering of radiation from an electric discharge pulse-periodic XeCl laser in H2,” Sov. J. Quantum Electron. 15, 727-729 (1985).
[CrossRef]

S. V. Melchenko, A. N. Panchenko, and V. F. Tarasenko, “High power Raman conversion of the discharge XeCl laser,” Opt. Commun. 56, 51-52 (1985).
[CrossRef]

P. Falsini, R. Pini, R. Salimbeni, M. Vannini, A. F. M. Y. Haider, and P. Buffa, “Simple and efficient H2 Raman conversion of a XeCl laser with a variable numerical aperture coupling geometry,” Opt. Commun. 53, 421-424 (1985).
[CrossRef]

G. V. Venkin and G. M. Mikheev, “Stimulated Raman spectroscopy of excited states of the hydrogen molecule,” Sov. J. Quantum Electron. 15, 257-259 (1985).
[CrossRef]

1984 (2)

S. F. Fulghum, D. W. Trainor, C. Duzy, and H. A. Hyman“Stimulated Raman scattering of XeF* laser radiation in H2--Part II,” IEEE J. Quantum Electron. 20, 218-222 (1984).
[CrossRef]

J. L. Carlsten, J. M. Telle, and R. G. Wenzel, “Efficient stimulated Raman scattering due to absence of second Stokes growth,” Opt. Lett. 9, 353-355 (1984).
[CrossRef] [PubMed]

1982 (1)

D. W. Trainor, H. A. Hyman, and R. M. Heinricks, “Stimulated Raman scattering of XeF laser radiation in H2,” IEEE J. Quantum Electron. 18, 1929-1934 (1982).
[CrossRef]

1969 (1)

C.-S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482-494 (1969).
[CrossRef]

1963 (2)

R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser stimulated Raman effect and resonant four photon interactions in gases H2, D2 and CH4,” Appl. Phys. Lett. 3, 181-184 (1963).
[CrossRef]

R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850-1852 (1963).
[CrossRef]

A., M. Gondal

M. A. Gondal and J. Mastromarino, “Lidar system for remote environmental studies,” Talanta 53, 147-154(2000).
[CrossRef]

Antonopoulos, G.

F. Benapid, G. Antonopoulos, J. C. Knight, P. J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[CrossRef]

Arfaj, A.

M. A. Gondal, A. Dastageer, Z. H. Yamani, and A. Arfaj, “Investigation of stimulated Raman scattering of v1 and v2 modes in CH4,” Chem. Phys. Lett. 377, 249-255(2003).
[CrossRef]

Bakhtiari, I. A.

M. A. Gondal, A. Dastageer, and I. A. Bakhtiari, “Laser based sensor for detection of hazardous gases in the air using waveguide CO2 laser,” J. Environ. Sci. Health Part A 42, 871-878(2007).
[CrossRef]

Baranov, V. Yu.

V. Yu. Baranov, V. M. Barisov, A. Yu. Vinokhodov, Yu. B. Kiryukhin, and Yu. Yu. Stepanov, “Stimulated Raman scattering of radiation from an electric discharge pulse-periodic XeCl laser in H2,” Sov. J. Quantum Electron. 15, 727-729 (1985).
[CrossRef]

Barisov, V. M.

V. Yu. Baranov, V. M. Barisov, A. Yu. Vinokhodov, Yu. B. Kiryukhin, and Yu. Yu. Stepanov, “Stimulated Raman scattering of radiation from an electric discharge pulse-periodic XeCl laser in H2,” Sov. J. Quantum Electron. 15, 727-729 (1985).
[CrossRef]

Benapid, F.

F. Benapid, G. Antonopoulos, J. C. Knight, P. J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[CrossRef]

Bespelov, V.

Buffa, P.

P. Falsini, R. Pini, R. Salimbeni, M. Vannini, A. F. M. Y. Haider, and P. Buffa, “Simple and efficient H2 Raman conversion of a XeCl laser with a variable numerical aperture coupling geometry,” Opt. Commun. 53, 421-424 (1985).
[CrossRef]

Carlsten, J. L.

Chen, P.

I. M. Tomov, P. Chen, and P. M. Rentzepis, “Efficient Raman conversion of high-repetition-rate, 193 nm picosecond laser-pulses,” J. Appl. Phys. 76, 1409-1412 (1994).
[CrossRef]

Cheng, X.

X. Cheng, Q. Lou, R. Wang, and Z. Wang, “Efficient XeCl/H2 Raman shifting to a blue-green region,” Appl. Phys. Lett. 51, 76-77 (1987).
[CrossRef]

Dastageer, A.

M. A. Gondal and A. Dastageer, “High sensitive detection of hazardous SO2 using 266 nm UV laser,” J. Environ. Sci. Health Part A 43 , 10 (2008).
[CrossRef]

M. A. Gondal, A. Dastageer, and I. A. Bakhtiari, “Laser based sensor for detection of hazardous gases in the air using waveguide CO2 laser,” J. Environ. Sci. Health Part A 42, 871-878(2007).
[CrossRef]

M. A. Gondal, A. Dastageer, Z. H. Yamani, and A. Arfaj, “Investigation of stimulated Raman scattering of v1 and v2 modes in CH4,” Chem. Phys. Lett. 377, 249-255(2003).
[CrossRef]

Duzy, C.

S. F. Fulghum, D. W. Trainor, C. Duzy, and H. A. Hyman“Stimulated Raman scattering of XeF* laser radiation in H2--Part II,” IEEE J. Quantum Electron. 20, 218-222 (1984).
[CrossRef]

Erni, D.

Falsini, P.

P. Falsini, R. Pini, R. Salimbeni, M. Vannini, A. F. M. Y. Haider, and P. Buffa, “Simple and efficient H2 Raman conversion of a XeCl laser with a variable numerical aperture coupling geometry,” Opt. Commun. 53, 421-424 (1985).
[CrossRef]

Fulghum, S. F.

S. F. Fulghum, D. W. Trainor, C. Duzy, and H. A. Hyman“Stimulated Raman scattering of XeF* laser radiation in H2--Part II,” IEEE J. Quantum Electron. 20, 218-222 (1984).
[CrossRef]

Gondal, M. A

Gondal, M. A.

M. A. Gondal and A. Dastageer, “High sensitive detection of hazardous SO2 using 266 nm UV laser,” J. Environ. Sci. Health Part A 43 , 10 (2008).
[CrossRef]

M. A. Gondal, A. Dastageer, and I. A. Bakhtiari, “Laser based sensor for detection of hazardous gases in the air using waveguide CO2 laser,” J. Environ. Sci. Health Part A 42, 871-878(2007).
[CrossRef]

M. A. Gondal, A. Dastageer, Z. H. Yamani, and A. Arfaj, “Investigation of stimulated Raman scattering of v1 and v2 modes in CH4,” Chem. Phys. Lett. 377, 249-255(2003).
[CrossRef]

M. A. Gondal, J. Mastromarino, and U. K. A. Klein, “Laser Doppler velocimeter for remote measurement of polluted water and aerosols discharges,” Opt. Lasers Eng. 38, 589-600(2002).
[CrossRef]

M. A. Gondal, “Laser photoacoustic spectrometer for remote monitoring of atmospheric pollutants,” Appl. Opt. 36, 3195-3201 (1997).
[CrossRef] [PubMed]

Gondal A., M. A.

Haider, A. F. M. Y.

P. Falsini, R. Pini, R. Salimbeni, M. Vannini, A. F. M. Y. Haider, and P. Buffa, “Simple and efficient H2 Raman conversion of a XeCl laser with a variable numerical aperture coupling geometry,” Opt. Commun. 53, 421-424 (1985).
[CrossRef]

Haner, A.

D. A. Haner and I. S. McDermid, “Stimulated Raman shifting of Nd:YAG fourth harmonic (266 nm) in H2, HD, D2,” IEEE J. Quantum Electron. 26, 1292-1298 (1990).
[CrossRef]

Heinricks, R. M.

D. W. Trainor, H. A. Hyman, and R. M. Heinricks, “Stimulated Raman scattering of XeF laser radiation in H2,” IEEE J. Quantum Electron. 18, 1929-1934 (1982).
[CrossRef]

Hellwarth, R. W.

R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850-1852 (1963).
[CrossRef]

Hyman, H. A.

S. F. Fulghum, D. W. Trainor, C. Duzy, and H. A. Hyman“Stimulated Raman scattering of XeF* laser radiation in H2--Part II,” IEEE J. Quantum Electron. 20, 218-222 (1984).
[CrossRef]

D. W. Trainor, H. A. Hyman, and R. M. Heinricks, “Stimulated Raman scattering of XeF laser radiation in H2,” IEEE J. Quantum Electron. 18, 1929-1934 (1982).
[CrossRef]

Jarvis, G. B.

Kenny, J. E.

Kiryukhin, Yu. B.

V. Yu. Baranov, V. M. Barisov, A. Yu. Vinokhodov, Yu. B. Kiryukhin, and Yu. Yu. Stepanov, “Stimulated Raman scattering of radiation from an electric discharge pulse-periodic XeCl laser in H2,” Sov. J. Quantum Electron. 15, 727-729 (1985).
[CrossRef]

Kitgawa, T.

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitgawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Klein, U. K. A.

M. A. Gondal, J. Mastromarino, and U. K. A. Klein, “Laser Doppler velocimeter for remote measurement of polluted water and aerosols discharges,” Opt. Lasers Eng. 38, 589-600(2002).
[CrossRef]

Knight, J. C.

F. Benapid, G. Antonopoulos, J. C. Knight, P. J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[CrossRef]

Koprinkov, I. G.

Kruglik, S. G.

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitgawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Krylov, V.

Lou, Q.

X. Cheng, Q. Lou, R. Wang, and Z. Wang, “Efficient XeCl/H2 Raman shifting to a blue-green region,” Appl. Phys. Lett. 51, 76-77 (1987).
[CrossRef]

Mastromarino, J.

M. A. Gondal, J. Mastromarino, and U. K. A. Klein, “Laser Doppler velocimeter for remote measurement of polluted water and aerosols discharges,” Opt. Lasers Eng. 38, 589-600(2002).
[CrossRef]

M. A. Gondal and J. Mastromarino, “Pulsed laser photoacoustic detection of SO2 near 225.7 nm,” Appl. Opt. 40, 2010-2016(2001).
[CrossRef]

M. A. Gondal and J. Mastromarino, “Lidar system for remote environmental studies,” Talanta 53, 147-154(2000).
[CrossRef]

Mathew, S.

McDermid, I. S.

D. A. Haner and I. S. McDermid, “Stimulated Raman shifting of Nd:YAG fourth harmonic (266 nm) in H2, HD, D2,” IEEE J. Quantum Electron. 26, 1292-1298 (1990).
[CrossRef]

Melchenko, S. V.

S. V. Melchenko, A. N. Panchenko, and V. F. Tarasenko, “High power Raman conversion of the discharge XeCl laser,” Opt. Commun. 56, 51-52 (1985).
[CrossRef]

Midorikawa, K.

Mikheev, G. M.

G. V. Venkin and G. M. Mikheev, “Stimulated Raman spectroscopy of excited states of the hydrogen molecule,” Sov. J. Quantum Electron. 15, 257-259 (1985).
[CrossRef]

Minck, R. W.

R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser stimulated Raman effect and resonant four photon interactions in gases H2, D2 and CH4,” Appl. Phys. Lett. 3, 181-184 (1963).
[CrossRef]

Mizutani, Y.

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitgawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Mutoh, H.

A. Sakoda, H. Mutoh, and K. Tsukiyama, “Effect of externally injected radiation on amplified spontaneous emission in CO,” Appl. Phys. B 72, 411-415 (2001).

Ollikainen, O.

Orlovich, V. A.

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitgawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Panchenko, A. N.

S. V. Melchenko, A. N. Panchenko, and V. F. Tarasenko, “High power Raman conversion of the discharge XeCl laser,” Opt. Commun. 56, 51-52 (1985).
[CrossRef]

Petrovic, Z.

Z. Petrovic and V. Stojanovic, “Anomalous Doppler broadening of hydrogen lines due to excitation by fast neutrals in low pressure townsend discharge,” Mem. Soc. Astron. Ital. Suppl. 7, 172-177 (2005).

Pini, R.

P. Falsini, R. Pini, R. Salimbeni, M. Vannini, A. F. M. Y. Haider, and P. Buffa, “Simple and efficient H2 Raman conversion of a XeCl laser with a variable numerical aperture coupling geometry,” Opt. Commun. 53, 421-424 (1985).
[CrossRef]

Rabane, A.

Rado, W. G.

R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser stimulated Raman effect and resonant four photon interactions in gases H2, D2 and CH4,” Appl. Phys. Lett. 3, 181-184 (1963).
[CrossRef]

Rentzepis, P. M.

I. M. Tomov, P. Chen, and P. M. Rentzepis, “Efficient Raman conversion of high-repetition-rate, 193 nm picosecond laser-pulses,” J. Appl. Phys. 76, 1409-1412 (1994).
[CrossRef]

Russell, P. J.

F. Benapid, G. Antonopoulos, J. C. Knight, P. J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[CrossRef]

Sakoda, A.

A. Sakoda, H. Mutoh, and K. Tsukiyama, “Effect of externally injected radiation on amplified spontaneous emission in CO,” Appl. Phys. B 72, 411-415 (2001).

Salimbeni, R.

P. Falsini, R. Pini, R. Salimbeni, M. Vannini, A. F. M. Y. Haider, and P. Buffa, “Simple and efficient H2 Raman conversion of a XeCl laser with a variable numerical aperture coupling geometry,” Opt. Commun. 53, 421-424 (1985).
[CrossRef]

Shvedko, A. G.

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitgawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Staselko, D.

Stepanov, Yu. Yu.

V. Yu. Baranov, V. M. Barisov, A. Yu. Vinokhodov, Yu. B. Kiryukhin, and Yu. Yu. Stepanov, “Stimulated Raman scattering of radiation from an electric discharge pulse-periodic XeCl laser in H2,” Sov. J. Quantum Electron. 15, 727-729 (1985).
[CrossRef]

Stojanovic, V.

Z. Petrovic and V. Stojanovic, “Anomalous Doppler broadening of hydrogen lines due to excitation by fast neutrals in low pressure townsend discharge,” Mem. Soc. Astron. Ital. Suppl. 7, 172-177 (2005).

Suda, A.

Tarasenko, V. F.

S. V. Melchenko, A. N. Panchenko, and V. F. Tarasenko, “High power Raman conversion of the discharge XeCl laser,” Opt. Commun. 56, 51-52 (1985).
[CrossRef]

Telle, J. M.

Terhune, R. W.

R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser stimulated Raman effect and resonant four photon interactions in gases H2, D2 and CH4,” Appl. Phys. Lett. 3, 181-184 (1963).
[CrossRef]

Tomov, I. M.

I. M. Tomov, P. Chen, and P. M. Rentzepis, “Efficient Raman conversion of high-repetition-rate, 193 nm picosecond laser-pulses,” J. Appl. Phys. 76, 1409-1412 (1994).
[CrossRef]

Trainor, D. W.

S. F. Fulghum, D. W. Trainor, C. Duzy, and H. A. Hyman“Stimulated Raman scattering of XeF* laser radiation in H2--Part II,” IEEE J. Quantum Electron. 20, 218-222 (1984).
[CrossRef]

D. W. Trainor, H. A. Hyman, and R. M. Heinricks, “Stimulated Raman scattering of XeF laser radiation in H2,” IEEE J. Quantum Electron. 18, 1929-1934 (1982).
[CrossRef]

Tsukiyama, K.

A. Sakoda, H. Mutoh, and K. Tsukiyama, “Effect of externally injected radiation on amplified spontaneous emission in CO,” Appl. Phys. B 72, 411-415 (2001).

Uesugi, Y.

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitgawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Vannini, M.

P. Falsini, R. Pini, R. Salimbeni, M. Vannini, A. F. M. Y. Haider, and P. Buffa, “Simple and efficient H2 Raman conversion of a XeCl laser with a variable numerical aperture coupling geometry,” Opt. Commun. 53, 421-424 (1985).
[CrossRef]

Venkin, G. V.

G. V. Venkin and G. M. Mikheev, “Stimulated Raman spectroscopy of excited states of the hydrogen molecule,” Sov. J. Quantum Electron. 15, 257-259 (1985).
[CrossRef]

Vinokhodov, A. Yu.

V. Yu. Baranov, V. M. Barisov, A. Yu. Vinokhodov, Yu. B. Kiryukhin, and Yu. Yu. Stepanov, “Stimulated Raman scattering of radiation from an electric discharge pulse-periodic XeCl laser in H2,” Sov. J. Quantum Electron. 15, 727-729 (1985).
[CrossRef]

Wang, C.-S.

C.-S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482-494 (1969).
[CrossRef]

Wang, P.

Wang, R.

X. Cheng, Q. Lou, R. Wang, and Z. Wang, “Efficient XeCl/H2 Raman shifting to a blue-green region,” Appl. Phys. Lett. 51, 76-77 (1987).
[CrossRef]

Wang, Z.

X. Cheng, Q. Lou, R. Wang, and Z. Wang, “Efficient XeCl/H2 Raman shifting to a blue-green region,” Appl. Phys. Lett. 51, 76-77 (1987).
[CrossRef]

Wenzel, R. G.

Wild, U.

Yamani, Z. H.

M. A Gondal and Z. H. Yamani, “Highly sensitive electronically modulated photoacoustic spectrometer for ozone detection,” Appl. Opt. 46, 7083-7090 (2007).
[CrossRef] [PubMed]

M. A. Gondal, A. Dastageer, Z. H. Yamani, and A. Arfaj, “Investigation of stimulated Raman scattering of v1 and v2 modes in CH4,” Chem. Phys. Lett. 377, 249-255(2003).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

A. Sakoda, H. Mutoh, and K. Tsukiyama, “Effect of externally injected radiation on amplified spontaneous emission in CO,” Appl. Phys. B 72, 411-415 (2001).

Appl. Phys. Lett. (2)

R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser stimulated Raman effect and resonant four photon interactions in gases H2, D2 and CH4,” Appl. Phys. Lett. 3, 181-184 (1963).
[CrossRef]

X. Cheng, Q. Lou, R. Wang, and Z. Wang, “Efficient XeCl/H2 Raman shifting to a blue-green region,” Appl. Phys. Lett. 51, 76-77 (1987).
[CrossRef]

Chem. Phys. Lett. (1)

M. A. Gondal, A. Dastageer, Z. H. Yamani, and A. Arfaj, “Investigation of stimulated Raman scattering of v1 and v2 modes in CH4,” Chem. Phys. Lett. 377, 249-255(2003).
[CrossRef]

IEEE J. Quantum Electron. (3)

D. A. Haner and I. S. McDermid, “Stimulated Raman shifting of Nd:YAG fourth harmonic (266 nm) in H2, HD, D2,” IEEE J. Quantum Electron. 26, 1292-1298 (1990).
[CrossRef]

D. W. Trainor, H. A. Hyman, and R. M. Heinricks, “Stimulated Raman scattering of XeF laser radiation in H2,” IEEE J. Quantum Electron. 18, 1929-1934 (1982).
[CrossRef]

S. F. Fulghum, D. W. Trainor, C. Duzy, and H. A. Hyman“Stimulated Raman scattering of XeF* laser radiation in H2--Part II,” IEEE J. Quantum Electron. 20, 218-222 (1984).
[CrossRef]

J. Appl. Phys. (1)

I. M. Tomov, P. Chen, and P. M. Rentzepis, “Efficient Raman conversion of high-repetition-rate, 193 nm picosecond laser-pulses,” J. Appl. Phys. 76, 1409-1412 (1994).
[CrossRef]

J. Environ. Sci. Health Part A (2)

M. A. Gondal, A. Dastageer, and I. A. Bakhtiari, “Laser based sensor for detection of hazardous gases in the air using waveguide CO2 laser,” J. Environ. Sci. Health Part A 42, 871-878(2007).
[CrossRef]

M. A. Gondal and A. Dastageer, “High sensitive detection of hazardous SO2 using 266 nm UV laser,” J. Environ. Sci. Health Part A 43 , 10 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Raman Spectrosc. (1)

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitgawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Mem. Soc. Astron. Ital. Suppl. (1)

Z. Petrovic and V. Stojanovic, “Anomalous Doppler broadening of hydrogen lines due to excitation by fast neutrals in low pressure townsend discharge,” Mem. Soc. Astron. Ital. Suppl. 7, 172-177 (2005).

Opt. Commun. (2)

P. Falsini, R. Pini, R. Salimbeni, M. Vannini, A. F. M. Y. Haider, and P. Buffa, “Simple and efficient H2 Raman conversion of a XeCl laser with a variable numerical aperture coupling geometry,” Opt. Commun. 53, 421-424 (1985).
[CrossRef]

S. V. Melchenko, A. N. Panchenko, and V. F. Tarasenko, “High power Raman conversion of the discharge XeCl laser,” Opt. Commun. 56, 51-52 (1985).
[CrossRef]

Opt. Lasers Eng. (1)

M. A. Gondal, J. Mastromarino, and U. K. A. Klein, “Laser Doppler velocimeter for remote measurement of polluted water and aerosols discharges,” Opt. Lasers Eng. 38, 589-600(2002).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. (2)

R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850-1852 (1963).
[CrossRef]

C.-S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482-494 (1969).
[CrossRef]

Phys. Rev. Lett. (1)

F. Benapid, G. Antonopoulos, J. C. Knight, P. J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[CrossRef]

Sov. J. Quantum Electron. (2)

G. V. Venkin and G. M. Mikheev, “Stimulated Raman spectroscopy of excited states of the hydrogen molecule,” Sov. J. Quantum Electron. 15, 257-259 (1985).
[CrossRef]

V. Yu. Baranov, V. M. Barisov, A. Yu. Vinokhodov, Yu. B. Kiryukhin, and Yu. Yu. Stepanov, “Stimulated Raman scattering of radiation from an electric discharge pulse-periodic XeCl laser in H2,” Sov. J. Quantum Electron. 15, 727-729 (1985).
[CrossRef]

Talanta (1)

M. A. Gondal and J. Mastromarino, “Lidar system for remote environmental studies,” Talanta 53, 147-154(2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup comprising the LIBS 2000 spectrometer and Nd:YAG laser.

Fig. 2
Fig. 2

Hydrogen- 266 nm SRS spectrum recorded by filling H 2 at 5 bars of cell pressure and 22 mJ of laser pulse energy. Inset, linewidth of the third SRS line in the spectrum.

Fig. 3
Fig. 3

Intensity evolution of the Stokes SRS lines of the hydrogen- 266 nm SRS spectrum at different laser pulse energies.

Fig. 4
Fig. 4

Laser pulse energy dependence of the output gain of the SRS lines in the hydrogen- 266 nm SRS spectrum recorded by filling H 2 at 5 bars of cell pressure.

Fig. 5
Fig. 5

Plot of converted energy at the SRS line ( 397.8 nm ) versus the incident laser pulse energy, to demonstrate the nonlinear dependence.

Fig. 6
Fig. 6

Pressure dependence of SRS lines in the hydrogen- 266 nm SRS spectrum. Here the laser pump energy was 22 mJ .

Tables (3)

Tables Icon

Table 1 Percentage Energy Conversion: Comparison of the Hydrogen- 355 nm and the Hydrogen- 266 nm Stokes SRS Systems

Tables Icon

Table 2 Output Gain at Different Stokes and Anti-Stokes SRS Lines with Laser Pump Energy for the Hydrogen- 266 nm SRS Spectrum

Tables Icon

Table 3 Curve Fitting Parameters of the SRS lines of Hydrogen- 266 nm SRS Spectrum

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

16 π 4 h 4 | R p q | 2 ρ 0 ( 8 π v ˘ n 3 + ρ n ) c d v ˘ 0 .

Metrics