Abstract

Based on the direct contact between the wafer and the pad, the pressure and velocity dependence of the material removal rate (MRR) in the fast polishing process (FPP) is investigated. There are three assumptions of the FPP material removal mechanism: the normal distribution of abrasive size, a periodic roughness of the pad surface, and the plastic contact between wafer–abrasive and pad–abrasive interfaces. Based on the particular FPP, a novel movement of the wafer is analyzed and a MRR equation is developed. The experiments with parameters of pressure and velocity are shown to verify the equation. Thus, a better understanding of the fundamental mechanism involved in FPP can be obtained.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Golini and S. D. Jacobs, “Physics of loose abrasive microgrinding,” Appl. Opt. 30, 2761-2777 (1991).
    [CrossRef] [PubMed]
  2. Y. Moon, “Mechanical aspects of the material removal mechanism in chemical mechanism polishing (CMP),” Ph.D. dissertation, (University of California at Berkeley, 1999).
  3. K. Pak, Y. R. Park, U. I. Chung, Y. B. Koh, and M. Y. Lee, “A CMP process using a fast oxide slurry,” in Proceedings of Second International Chemical Mechanical Planarization for ULSI Multilevel Interconnection Conference (Institute for Microelectronics Interconnection, Tampa, 1997), pp. 299-306.
  4. W. T. Tseng and Y. L. Wang, “Re-examination of pressure and speed dependence of removal rate during chemical mechanical polishing processes,” J. Electrochem. Soc. 144, L15-L17(1997).
    [CrossRef]
  5. K. Pak, Y. R. Park, U. L. Chung, Y. B. Koh, and M. Y. Lee, “A CMP process using a fast oxide slurry,” in Proceedings of the Second International Chemical Mechanical Planarization for ULSI Multilevel Interconnection Conference (Institute for Microelectronics Interconnection, Tampa,1997), pp. 299-306.
  6. D. O. Ouma, “Modeling of chemical mechanical polishing for dielectric planarization,” Ph.D. dissertation (MIT, 1999).
  7. A. Jindal, S. Hegde, and S. V. Babu, “Evaluation of alumina/silica mixed abrasive slurries for chemical mechanical polishing of copper and tantalum,” in Eighteenth International IEEE VLSI Multilevel Interconnection Conference (VMIC) (Institute for Microelectronics Interconnection, Tampa,2001), pp. 297-306.
  8. F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Guthrie, D. J. Pearson, and M. B. Small, “Chemical-mechanical polishing for fabricating patterned W metal features as chip omterconnects,” J. Electrochem. Soc. 138, 3640-3645 (1991).
    [CrossRef]
  9. F. G. Shi and B. Zhao, “Modeling of chemical mechanical polishing with soft pads,” Appl. Phys. A 67, 249-252 (1998).
    [CrossRef]
  10. B. Zhao and F. G. Shi, “Chemical mechanical polishing in IC processes: new fundamental insights,” in Proceedings of the Fourth International Chemical Mechanical Planarization for ULSI Multilevel Interconnection Conference (Institute for Microelectronics Interconnection, Tampa,1999), pp. 12-22.
    [PubMed]
  11. A. Bastawros, A. Chandra, Y. J. Guo, and B. Yan, “Pad effects on material-removal rate in chemical-mechanical planarization,” J. Electron. Mater. 31, 1022-1031 (2002).
    [CrossRef]
  12. G. Fu, A. Chandra, S. Gruda, and G. Subhash, “A plasticity-based model of material removal in chemical-mechanical polishing (CMP),” IEEE Trans. Semicond. Manuf. 14, 406-417 (2001).
    [CrossRef]
  13. S. R. Runnels, “Advances in physically based erosion simulators for CMP,” J. Electron. Mater. 25, 1574-1580 (1996).
    [CrossRef]
  14. S. R. Runnels and T. Olavson, “Optimizing wafer polishing through phenomenological modeling,” J. Electrochem. Soc. 142, 2032-2036 (1995).
    [CrossRef]
  15. S. R. Runnels, “Feature scale fluid-based erosion modeling for chemical mechanical polishing,” J. Electrochem. Soc. 141, 1900-1904 (1994).
    [CrossRef]
  16. M. D. Hersey, Theory and Research in Lubrication (Wiley, 1966).
  17. H. Schlichting, Boundary Layer Theory, 7th ed. (McGraw-Hill, 1979).
  18. N. Patir and H. S. Cheng, “An average flow model for determining effects of three dimensional roughness on partial hydrodynamic lubrication,” ASME J. Lubr. Technol. 100, 12-17 (1978).
    [CrossRef]
  19. J. Luo and D. A. Dornfeld, “Material removal mechanism in chemical mechanical polishing: theory and modeling,” IEEE Trans. Semicond. Manuf. 14, 112-123 (2001).
    [CrossRef]
  20. J. Luo and D. A. Dornfeld, “Effects of abrasive size distribution in chemical mechanical planarization: modeling and verification,” IEEE Trans. Semicond. Manuf. 16, 469-476 (2003).
    [CrossRef]
  21. F. Zhang, A. A. Busnaina, and G. Ahmadi, “Particle adhesion and removal in chemical mechanical polishing and post-CMP cleaning,” J. Electrochem. Soc. 146, 2665-2669 (1999).
    [CrossRef]
  22. R. Komanduri, N. Chandrasekaran, and L. M. Raff, “Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach,” Wear 219, 84-97 (1998).
    [CrossRef]
  23. J. A. Trogolo and K. Rajan, “Near surface modification of silica structure induced by chemical/mechanical polishing,” J. Mater. Sci. Technol. (Sofia) 29, 4554-4558 (1994).
  24. E. I. Hwang and D. A. Dornfeld, “Scratch testing of silicon wafers for surface characterization,” in Small Feature Reproducibility (SFR) Annual Workshop (University of California at Berkeley, 2000), No. 8.
  25. J. Hernandez, P. Wrschka, and G. S. Oehrlein, “Surface chemistry studies of copper chemical mechanical planarization,” J. Electrochem. Soc. 148, 389-397 (2001).
    [CrossRef]
  26. N. J. Brown, “Optical Fabrication,” Report MISC-4476 Rev. I (Lawrence Livermore National Laboratory, 1990).
  27. H. Hocheng, H. Tsai, and L. Chen, “A kinematic analysis of CMP based on velocity model,” in Proceedings of the Second International Chemical-Mechanical Polish (CMP) for VLSI/ULSI Multilevel Interconnection Conference (CMP-MIC) (Institute for Microelectronics Interconnection, Tampa,1997), pp. 277-279.

2003 (1)

J. Luo and D. A. Dornfeld, “Effects of abrasive size distribution in chemical mechanical planarization: modeling and verification,” IEEE Trans. Semicond. Manuf. 16, 469-476 (2003).
[CrossRef]

2002 (1)

A. Bastawros, A. Chandra, Y. J. Guo, and B. Yan, “Pad effects on material-removal rate in chemical-mechanical planarization,” J. Electron. Mater. 31, 1022-1031 (2002).
[CrossRef]

2001 (3)

G. Fu, A. Chandra, S. Gruda, and G. Subhash, “A plasticity-based model of material removal in chemical-mechanical polishing (CMP),” IEEE Trans. Semicond. Manuf. 14, 406-417 (2001).
[CrossRef]

J. Luo and D. A. Dornfeld, “Material removal mechanism in chemical mechanical polishing: theory and modeling,” IEEE Trans. Semicond. Manuf. 14, 112-123 (2001).
[CrossRef]

J. Hernandez, P. Wrschka, and G. S. Oehrlein, “Surface chemistry studies of copper chemical mechanical planarization,” J. Electrochem. Soc. 148, 389-397 (2001).
[CrossRef]

1999 (1)

F. Zhang, A. A. Busnaina, and G. Ahmadi, “Particle adhesion and removal in chemical mechanical polishing and post-CMP cleaning,” J. Electrochem. Soc. 146, 2665-2669 (1999).
[CrossRef]

1998 (2)

R. Komanduri, N. Chandrasekaran, and L. M. Raff, “Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach,” Wear 219, 84-97 (1998).
[CrossRef]

F. G. Shi and B. Zhao, “Modeling of chemical mechanical polishing with soft pads,” Appl. Phys. A 67, 249-252 (1998).
[CrossRef]

1997 (1)

W. T. Tseng and Y. L. Wang, “Re-examination of pressure and speed dependence of removal rate during chemical mechanical polishing processes,” J. Electrochem. Soc. 144, L15-L17(1997).
[CrossRef]

1996 (1)

S. R. Runnels, “Advances in physically based erosion simulators for CMP,” J. Electron. Mater. 25, 1574-1580 (1996).
[CrossRef]

1995 (1)

S. R. Runnels and T. Olavson, “Optimizing wafer polishing through phenomenological modeling,” J. Electrochem. Soc. 142, 2032-2036 (1995).
[CrossRef]

1994 (2)

S. R. Runnels, “Feature scale fluid-based erosion modeling for chemical mechanical polishing,” J. Electrochem. Soc. 141, 1900-1904 (1994).
[CrossRef]

J. A. Trogolo and K. Rajan, “Near surface modification of silica structure induced by chemical/mechanical polishing,” J. Mater. Sci. Technol. (Sofia) 29, 4554-4558 (1994).

1991 (2)

D. Golini and S. D. Jacobs, “Physics of loose abrasive microgrinding,” Appl. Opt. 30, 2761-2777 (1991).
[CrossRef] [PubMed]

F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Guthrie, D. J. Pearson, and M. B. Small, “Chemical-mechanical polishing for fabricating patterned W metal features as chip omterconnects,” J. Electrochem. Soc. 138, 3640-3645 (1991).
[CrossRef]

1978 (1)

N. Patir and H. S. Cheng, “An average flow model for determining effects of three dimensional roughness on partial hydrodynamic lubrication,” ASME J. Lubr. Technol. 100, 12-17 (1978).
[CrossRef]

Ahmadi, G.

F. Zhang, A. A. Busnaina, and G. Ahmadi, “Particle adhesion and removal in chemical mechanical polishing and post-CMP cleaning,” J. Electrochem. Soc. 146, 2665-2669 (1999).
[CrossRef]

Babu, S. V.

A. Jindal, S. Hegde, and S. V. Babu, “Evaluation of alumina/silica mixed abrasive slurries for chemical mechanical polishing of copper and tantalum,” in Eighteenth International IEEE VLSI Multilevel Interconnection Conference (VMIC) (Institute for Microelectronics Interconnection, Tampa,2001), pp. 297-306.

Bastawros, A.

A. Bastawros, A. Chandra, Y. J. Guo, and B. Yan, “Pad effects on material-removal rate in chemical-mechanical planarization,” J. Electron. Mater. 31, 1022-1031 (2002).
[CrossRef]

Broadie, R. E.

F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Guthrie, D. J. Pearson, and M. B. Small, “Chemical-mechanical polishing for fabricating patterned W metal features as chip omterconnects,” J. Electrochem. Soc. 138, 3640-3645 (1991).
[CrossRef]

Brown, N. J.

N. J. Brown, “Optical Fabrication,” Report MISC-4476 Rev. I (Lawrence Livermore National Laboratory, 1990).

Busnaina, A. A.

F. Zhang, A. A. Busnaina, and G. Ahmadi, “Particle adhesion and removal in chemical mechanical polishing and post-CMP cleaning,” J. Electrochem. Soc. 146, 2665-2669 (1999).
[CrossRef]

Chandra, A.

A. Bastawros, A. Chandra, Y. J. Guo, and B. Yan, “Pad effects on material-removal rate in chemical-mechanical planarization,” J. Electron. Mater. 31, 1022-1031 (2002).
[CrossRef]

G. Fu, A. Chandra, S. Gruda, and G. Subhash, “A plasticity-based model of material removal in chemical-mechanical polishing (CMP),” IEEE Trans. Semicond. Manuf. 14, 406-417 (2001).
[CrossRef]

Chandrasekaran, N.

R. Komanduri, N. Chandrasekaran, and L. M. Raff, “Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach,” Wear 219, 84-97 (1998).
[CrossRef]

Chen, L.

H. Hocheng, H. Tsai, and L. Chen, “A kinematic analysis of CMP based on velocity model,” in Proceedings of the Second International Chemical-Mechanical Polish (CMP) for VLSI/ULSI Multilevel Interconnection Conference (CMP-MIC) (Institute for Microelectronics Interconnection, Tampa,1997), pp. 277-279.

Cheng, H. S.

N. Patir and H. S. Cheng, “An average flow model for determining effects of three dimensional roughness on partial hydrodynamic lubrication,” ASME J. Lubr. Technol. 100, 12-17 (1978).
[CrossRef]

Chung, U. I.

K. Pak, Y. R. Park, U. I. Chung, Y. B. Koh, and M. Y. Lee, “A CMP process using a fast oxide slurry,” in Proceedings of Second International Chemical Mechanical Planarization for ULSI Multilevel Interconnection Conference (Institute for Microelectronics Interconnection, Tampa, 1997), pp. 299-306.

Chung, U. L.

K. Pak, Y. R. Park, U. L. Chung, Y. B. Koh, and M. Y. Lee, “A CMP process using a fast oxide slurry,” in Proceedings of the Second International Chemical Mechanical Planarization for ULSI Multilevel Interconnection Conference (Institute for Microelectronics Interconnection, Tampa,1997), pp. 299-306.

Dornfeld, D. A.

J. Luo and D. A. Dornfeld, “Effects of abrasive size distribution in chemical mechanical planarization: modeling and verification,” IEEE Trans. Semicond. Manuf. 16, 469-476 (2003).
[CrossRef]

J. Luo and D. A. Dornfeld, “Material removal mechanism in chemical mechanical polishing: theory and modeling,” IEEE Trans. Semicond. Manuf. 14, 112-123 (2001).
[CrossRef]

E. I. Hwang and D. A. Dornfeld, “Scratch testing of silicon wafers for surface characterization,” in Small Feature Reproducibility (SFR) Annual Workshop (University of California at Berkeley, 2000), No. 8.

Fu, G.

G. Fu, A. Chandra, S. Gruda, and G. Subhash, “A plasticity-based model of material removal in chemical-mechanical polishing (CMP),” IEEE Trans. Semicond. Manuf. 14, 406-417 (2001).
[CrossRef]

Golini, D.

Gruda, S.

G. Fu, A. Chandra, S. Gruda, and G. Subhash, “A plasticity-based model of material removal in chemical-mechanical polishing (CMP),” IEEE Trans. Semicond. Manuf. 14, 406-417 (2001).
[CrossRef]

Guo, Y. J.

A. Bastawros, A. Chandra, Y. J. Guo, and B. Yan, “Pad effects on material-removal rate in chemical-mechanical planarization,” J. Electron. Mater. 31, 1022-1031 (2002).
[CrossRef]

Guthrie, D. J.

F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Guthrie, D. J. Pearson, and M. B. Small, “Chemical-mechanical polishing for fabricating patterned W metal features as chip omterconnects,” J. Electrochem. Soc. 138, 3640-3645 (1991).
[CrossRef]

Guthrie, W. L.

F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Guthrie, D. J. Pearson, and M. B. Small, “Chemical-mechanical polishing for fabricating patterned W metal features as chip omterconnects,” J. Electrochem. Soc. 138, 3640-3645 (1991).
[CrossRef]

Hegde, S.

A. Jindal, S. Hegde, and S. V. Babu, “Evaluation of alumina/silica mixed abrasive slurries for chemical mechanical polishing of copper and tantalum,” in Eighteenth International IEEE VLSI Multilevel Interconnection Conference (VMIC) (Institute for Microelectronics Interconnection, Tampa,2001), pp. 297-306.

Hernandez, J.

J. Hernandez, P. Wrschka, and G. S. Oehrlein, “Surface chemistry studies of copper chemical mechanical planarization,” J. Electrochem. Soc. 148, 389-397 (2001).
[CrossRef]

Hersey, M. D.

M. D. Hersey, Theory and Research in Lubrication (Wiley, 1966).

Hocheng, H.

H. Hocheng, H. Tsai, and L. Chen, “A kinematic analysis of CMP based on velocity model,” in Proceedings of the Second International Chemical-Mechanical Polish (CMP) for VLSI/ULSI Multilevel Interconnection Conference (CMP-MIC) (Institute for Microelectronics Interconnection, Tampa,1997), pp. 277-279.

Hwang, E. I.

E. I. Hwang and D. A. Dornfeld, “Scratch testing of silicon wafers for surface characterization,” in Small Feature Reproducibility (SFR) Annual Workshop (University of California at Berkeley, 2000), No. 8.

Jacobs, S. D.

Jaso, M. A.

F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Guthrie, D. J. Pearson, and M. B. Small, “Chemical-mechanical polishing for fabricating patterned W metal features as chip omterconnects,” J. Electrochem. Soc. 138, 3640-3645 (1991).
[CrossRef]

Jindal, A.

A. Jindal, S. Hegde, and S. V. Babu, “Evaluation of alumina/silica mixed abrasive slurries for chemical mechanical polishing of copper and tantalum,” in Eighteenth International IEEE VLSI Multilevel Interconnection Conference (VMIC) (Institute for Microelectronics Interconnection, Tampa,2001), pp. 297-306.

Kaufman, F. B.

F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Guthrie, D. J. Pearson, and M. B. Small, “Chemical-mechanical polishing for fabricating patterned W metal features as chip omterconnects,” J. Electrochem. Soc. 138, 3640-3645 (1991).
[CrossRef]

Koh, Y. B.

K. Pak, Y. R. Park, U. L. Chung, Y. B. Koh, and M. Y. Lee, “A CMP process using a fast oxide slurry,” in Proceedings of the Second International Chemical Mechanical Planarization for ULSI Multilevel Interconnection Conference (Institute for Microelectronics Interconnection, Tampa,1997), pp. 299-306.

K. Pak, Y. R. Park, U. I. Chung, Y. B. Koh, and M. Y. Lee, “A CMP process using a fast oxide slurry,” in Proceedings of Second International Chemical Mechanical Planarization for ULSI Multilevel Interconnection Conference (Institute for Microelectronics Interconnection, Tampa, 1997), pp. 299-306.

Komanduri, R.

R. Komanduri, N. Chandrasekaran, and L. M. Raff, “Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach,” Wear 219, 84-97 (1998).
[CrossRef]

Lee, M. Y.

K. Pak, Y. R. Park, U. I. Chung, Y. B. Koh, and M. Y. Lee, “A CMP process using a fast oxide slurry,” in Proceedings of Second International Chemical Mechanical Planarization for ULSI Multilevel Interconnection Conference (Institute for Microelectronics Interconnection, Tampa, 1997), pp. 299-306.

K. Pak, Y. R. Park, U. L. Chung, Y. B. Koh, and M. Y. Lee, “A CMP process using a fast oxide slurry,” in Proceedings of the Second International Chemical Mechanical Planarization for ULSI Multilevel Interconnection Conference (Institute for Microelectronics Interconnection, Tampa,1997), pp. 299-306.

Luo, J.

J. Luo and D. A. Dornfeld, “Effects of abrasive size distribution in chemical mechanical planarization: modeling and verification,” IEEE Trans. Semicond. Manuf. 16, 469-476 (2003).
[CrossRef]

J. Luo and D. A. Dornfeld, “Material removal mechanism in chemical mechanical polishing: theory and modeling,” IEEE Trans. Semicond. Manuf. 14, 112-123 (2001).
[CrossRef]

Moon, Y.

Y. Moon, “Mechanical aspects of the material removal mechanism in chemical mechanism polishing (CMP),” Ph.D. dissertation, (University of California at Berkeley, 1999).

Oehrlein, G. S.

J. Hernandez, P. Wrschka, and G. S. Oehrlein, “Surface chemistry studies of copper chemical mechanical planarization,” J. Electrochem. Soc. 148, 389-397 (2001).
[CrossRef]

Olavson, T.

S. R. Runnels and T. Olavson, “Optimizing wafer polishing through phenomenological modeling,” J. Electrochem. Soc. 142, 2032-2036 (1995).
[CrossRef]

Ouma, D. O.

D. O. Ouma, “Modeling of chemical mechanical polishing for dielectric planarization,” Ph.D. dissertation (MIT, 1999).

Pak, K.

K. Pak, Y. R. Park, U. L. Chung, Y. B. Koh, and M. Y. Lee, “A CMP process using a fast oxide slurry,” in Proceedings of the Second International Chemical Mechanical Planarization for ULSI Multilevel Interconnection Conference (Institute for Microelectronics Interconnection, Tampa,1997), pp. 299-306.

K. Pak, Y. R. Park, U. I. Chung, Y. B. Koh, and M. Y. Lee, “A CMP process using a fast oxide slurry,” in Proceedings of Second International Chemical Mechanical Planarization for ULSI Multilevel Interconnection Conference (Institute for Microelectronics Interconnection, Tampa, 1997), pp. 299-306.

Park, Y. R.

K. Pak, Y. R. Park, U. I. Chung, Y. B. Koh, and M. Y. Lee, “A CMP process using a fast oxide slurry,” in Proceedings of Second International Chemical Mechanical Planarization for ULSI Multilevel Interconnection Conference (Institute for Microelectronics Interconnection, Tampa, 1997), pp. 299-306.

K. Pak, Y. R. Park, U. L. Chung, Y. B. Koh, and M. Y. Lee, “A CMP process using a fast oxide slurry,” in Proceedings of the Second International Chemical Mechanical Planarization for ULSI Multilevel Interconnection Conference (Institute for Microelectronics Interconnection, Tampa,1997), pp. 299-306.

Patir, N.

N. Patir and H. S. Cheng, “An average flow model for determining effects of three dimensional roughness on partial hydrodynamic lubrication,” ASME J. Lubr. Technol. 100, 12-17 (1978).
[CrossRef]

Pearson, D. J.

F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Guthrie, D. J. Pearson, and M. B. Small, “Chemical-mechanical polishing for fabricating patterned W metal features as chip omterconnects,” J. Electrochem. Soc. 138, 3640-3645 (1991).
[CrossRef]

Raff, L. M.

R. Komanduri, N. Chandrasekaran, and L. M. Raff, “Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach,” Wear 219, 84-97 (1998).
[CrossRef]

Rajan, K.

J. A. Trogolo and K. Rajan, “Near surface modification of silica structure induced by chemical/mechanical polishing,” J. Mater. Sci. Technol. (Sofia) 29, 4554-4558 (1994).

Runnels, S. R.

S. R. Runnels, “Advances in physically based erosion simulators for CMP,” J. Electron. Mater. 25, 1574-1580 (1996).
[CrossRef]

S. R. Runnels and T. Olavson, “Optimizing wafer polishing through phenomenological modeling,” J. Electrochem. Soc. 142, 2032-2036 (1995).
[CrossRef]

S. R. Runnels, “Feature scale fluid-based erosion modeling for chemical mechanical polishing,” J. Electrochem. Soc. 141, 1900-1904 (1994).
[CrossRef]

Schlichting, H.

H. Schlichting, Boundary Layer Theory, 7th ed. (McGraw-Hill, 1979).

Shi, F. G.

F. G. Shi and B. Zhao, “Modeling of chemical mechanical polishing with soft pads,” Appl. Phys. A 67, 249-252 (1998).
[CrossRef]

B. Zhao and F. G. Shi, “Chemical mechanical polishing in IC processes: new fundamental insights,” in Proceedings of the Fourth International Chemical Mechanical Planarization for ULSI Multilevel Interconnection Conference (Institute for Microelectronics Interconnection, Tampa,1999), pp. 12-22.
[PubMed]

Small, M. B.

F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Guthrie, D. J. Pearson, and M. B. Small, “Chemical-mechanical polishing for fabricating patterned W metal features as chip omterconnects,” J. Electrochem. Soc. 138, 3640-3645 (1991).
[CrossRef]

Subhash, G.

G. Fu, A. Chandra, S. Gruda, and G. Subhash, “A plasticity-based model of material removal in chemical-mechanical polishing (CMP),” IEEE Trans. Semicond. Manuf. 14, 406-417 (2001).
[CrossRef]

Thompson, D. B.

F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Guthrie, D. J. Pearson, and M. B. Small, “Chemical-mechanical polishing for fabricating patterned W metal features as chip omterconnects,” J. Electrochem. Soc. 138, 3640-3645 (1991).
[CrossRef]

Trogolo, J. A.

J. A. Trogolo and K. Rajan, “Near surface modification of silica structure induced by chemical/mechanical polishing,” J. Mater. Sci. Technol. (Sofia) 29, 4554-4558 (1994).

Tsai, H.

H. Hocheng, H. Tsai, and L. Chen, “A kinematic analysis of CMP based on velocity model,” in Proceedings of the Second International Chemical-Mechanical Polish (CMP) for VLSI/ULSI Multilevel Interconnection Conference (CMP-MIC) (Institute for Microelectronics Interconnection, Tampa,1997), pp. 277-279.

Tseng, W. T.

W. T. Tseng and Y. L. Wang, “Re-examination of pressure and speed dependence of removal rate during chemical mechanical polishing processes,” J. Electrochem. Soc. 144, L15-L17(1997).
[CrossRef]

Wang, Y. L.

W. T. Tseng and Y. L. Wang, “Re-examination of pressure and speed dependence of removal rate during chemical mechanical polishing processes,” J. Electrochem. Soc. 144, L15-L17(1997).
[CrossRef]

Wrschka, P.

J. Hernandez, P. Wrschka, and G. S. Oehrlein, “Surface chemistry studies of copper chemical mechanical planarization,” J. Electrochem. Soc. 148, 389-397 (2001).
[CrossRef]

Yan, B.

A. Bastawros, A. Chandra, Y. J. Guo, and B. Yan, “Pad effects on material-removal rate in chemical-mechanical planarization,” J. Electron. Mater. 31, 1022-1031 (2002).
[CrossRef]

Zhang, F.

F. Zhang, A. A. Busnaina, and G. Ahmadi, “Particle adhesion and removal in chemical mechanical polishing and post-CMP cleaning,” J. Electrochem. Soc. 146, 2665-2669 (1999).
[CrossRef]

Zhao, B.

F. G. Shi and B. Zhao, “Modeling of chemical mechanical polishing with soft pads,” Appl. Phys. A 67, 249-252 (1998).
[CrossRef]

B. Zhao and F. G. Shi, “Chemical mechanical polishing in IC processes: new fundamental insights,” in Proceedings of the Fourth International Chemical Mechanical Planarization for ULSI Multilevel Interconnection Conference (Institute for Microelectronics Interconnection, Tampa,1999), pp. 12-22.
[PubMed]

Appl. Opt. (1)

Appl. Phys. A (1)

F. G. Shi and B. Zhao, “Modeling of chemical mechanical polishing with soft pads,” Appl. Phys. A 67, 249-252 (1998).
[CrossRef]

ASME J. Lubr. Technol. (1)

N. Patir and H. S. Cheng, “An average flow model for determining effects of three dimensional roughness on partial hydrodynamic lubrication,” ASME J. Lubr. Technol. 100, 12-17 (1978).
[CrossRef]

IEEE Trans. Semicond. Manuf. (3)

J. Luo and D. A. Dornfeld, “Material removal mechanism in chemical mechanical polishing: theory and modeling,” IEEE Trans. Semicond. Manuf. 14, 112-123 (2001).
[CrossRef]

J. Luo and D. A. Dornfeld, “Effects of abrasive size distribution in chemical mechanical planarization: modeling and verification,” IEEE Trans. Semicond. Manuf. 16, 469-476 (2003).
[CrossRef]

G. Fu, A. Chandra, S. Gruda, and G. Subhash, “A plasticity-based model of material removal in chemical-mechanical polishing (CMP),” IEEE Trans. Semicond. Manuf. 14, 406-417 (2001).
[CrossRef]

J. Electrochem. Soc. (6)

F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Guthrie, D. J. Pearson, and M. B. Small, “Chemical-mechanical polishing for fabricating patterned W metal features as chip omterconnects,” J. Electrochem. Soc. 138, 3640-3645 (1991).
[CrossRef]

S. R. Runnels and T. Olavson, “Optimizing wafer polishing through phenomenological modeling,” J. Electrochem. Soc. 142, 2032-2036 (1995).
[CrossRef]

S. R. Runnels, “Feature scale fluid-based erosion modeling for chemical mechanical polishing,” J. Electrochem. Soc. 141, 1900-1904 (1994).
[CrossRef]

W. T. Tseng and Y. L. Wang, “Re-examination of pressure and speed dependence of removal rate during chemical mechanical polishing processes,” J. Electrochem. Soc. 144, L15-L17(1997).
[CrossRef]

F. Zhang, A. A. Busnaina, and G. Ahmadi, “Particle adhesion and removal in chemical mechanical polishing and post-CMP cleaning,” J. Electrochem. Soc. 146, 2665-2669 (1999).
[CrossRef]

J. Hernandez, P. Wrschka, and G. S. Oehrlein, “Surface chemistry studies of copper chemical mechanical planarization,” J. Electrochem. Soc. 148, 389-397 (2001).
[CrossRef]

J. Electron. Mater. (2)

A. Bastawros, A. Chandra, Y. J. Guo, and B. Yan, “Pad effects on material-removal rate in chemical-mechanical planarization,” J. Electron. Mater. 31, 1022-1031 (2002).
[CrossRef]

S. R. Runnels, “Advances in physically based erosion simulators for CMP,” J. Electron. Mater. 25, 1574-1580 (1996).
[CrossRef]

J. Mater. Sci. Technol. (Sofia) (1)

J. A. Trogolo and K. Rajan, “Near surface modification of silica structure induced by chemical/mechanical polishing,” J. Mater. Sci. Technol. (Sofia) 29, 4554-4558 (1994).

Wear (1)

R. Komanduri, N. Chandrasekaran, and L. M. Raff, “Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach,” Wear 219, 84-97 (1998).
[CrossRef]

Other (11)

E. I. Hwang and D. A. Dornfeld, “Scratch testing of silicon wafers for surface characterization,” in Small Feature Reproducibility (SFR) Annual Workshop (University of California at Berkeley, 2000), No. 8.

N. J. Brown, “Optical Fabrication,” Report MISC-4476 Rev. I (Lawrence Livermore National Laboratory, 1990).

H. Hocheng, H. Tsai, and L. Chen, “A kinematic analysis of CMP based on velocity model,” in Proceedings of the Second International Chemical-Mechanical Polish (CMP) for VLSI/ULSI Multilevel Interconnection Conference (CMP-MIC) (Institute for Microelectronics Interconnection, Tampa,1997), pp. 277-279.

M. D. Hersey, Theory and Research in Lubrication (Wiley, 1966).

H. Schlichting, Boundary Layer Theory, 7th ed. (McGraw-Hill, 1979).

K. Pak, Y. R. Park, U. L. Chung, Y. B. Koh, and M. Y. Lee, “A CMP process using a fast oxide slurry,” in Proceedings of the Second International Chemical Mechanical Planarization for ULSI Multilevel Interconnection Conference (Institute for Microelectronics Interconnection, Tampa,1997), pp. 299-306.

D. O. Ouma, “Modeling of chemical mechanical polishing for dielectric planarization,” Ph.D. dissertation (MIT, 1999).

A. Jindal, S. Hegde, and S. V. Babu, “Evaluation of alumina/silica mixed abrasive slurries for chemical mechanical polishing of copper and tantalum,” in Eighteenth International IEEE VLSI Multilevel Interconnection Conference (VMIC) (Institute for Microelectronics Interconnection, Tampa,2001), pp. 297-306.

B. Zhao and F. G. Shi, “Chemical mechanical polishing in IC processes: new fundamental insights,” in Proceedings of the Fourth International Chemical Mechanical Planarization for ULSI Multilevel Interconnection Conference (Institute for Microelectronics Interconnection, Tampa,1999), pp. 12-22.
[PubMed]

Y. Moon, “Mechanical aspects of the material removal mechanism in chemical mechanism polishing (CMP),” Ph.D. dissertation, (University of California at Berkeley, 1999).

K. Pak, Y. R. Park, U. I. Chung, Y. B. Koh, and M. Y. Lee, “A CMP process using a fast oxide slurry,” in Proceedings of Second International Chemical Mechanical Planarization for ULSI Multilevel Interconnection Conference (Institute for Microelectronics Interconnection, Tampa, 1997), pp. 299-306.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Three types of contact mode in CMP.

Fig. 2
Fig. 2

Stribeck curve in lubrication.

Fig. 3
Fig. 3

Friction force variation under different loads between the wafer and the polishing pad with abrasive slurry.

Fig. 4
Fig. 4

Moon’s Hersey number in the Stribeck curve.

Fig. 5
Fig. 5

Cross-sectional view of the pad surface by SEM.

Fig. 6
Fig. 6

Top view of the pad surface by SEM.

Fig. 7
Fig. 7

Size distribution of Ce O 2 .

Fig. 8
Fig. 8

Ce O 2 abrasive on SEM.

Fig. 9
Fig. 9

Structure of the passive layer.

Fig. 10
Fig. 10

Cross-sectional view of the stable contact.

Fig. 11
Fig. 11

Top view of the stable contact.

Fig. 12
Fig. 12

Layout of PPS100.

Fig. 13
Fig. 13

Illustration of the relative motion between the wafer and the pad.

Fig. 14
Fig. 14

Experimental data about pressure dependence of the MRR and prediction of the model in BK7 FPP.

Fig. 15
Fig. 15

Experimental data about velocity dependence of the MRR and prediction of the model in BK7 FPP.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

MRR thickness = C 1 [ 1 - ϕ ( 3 - C 2 p 0 1 3 ) ] · p 0 · v ,
C 1 = 2 2 d s k 2 ρ s m s - a D sum a l ρ a π x avg · E p ( b 1 H w ) 3 / 2 ,
C 2 = 0.25 · ( 4 3 ) 2 / 3 · ( x avg + 3 σ ) ( 1 H p + 1 H w ) σ · E p 2 / 3 b 1 ,
x 2 = r · cos ( a ) , y 2 = r · sin ( a ) , X 2 = x 2 · cos ( w 2 · t ) - y 2 · sin ( w 2 · t ) , Y 2 = x 2 · sin ( w 2 · t ) + y 2 · cos ( w 2 · t ) , X 1 = X 2 + e + S 2 - 4 S V x V x 1 ( π S V x ) 2 · [ cos π · T S V X + 1 3 2 cos 3 · π · T S V X + 1 5 2 cos 5 · π · T S V X + ] Y 1 = Y 2 , x 1 = X 1 · cos ( w 1 · t ) + Y 1 · sin ( w 1 · t ) , y 1 = - X 1 · sin ( w 1 · t ) + Y 1 · cos ( w 1 · t ) ,
V = ( d x 1 d t ) 2 + ( d y 1 d t ) 2 , S = 0.1 · R 1 + R - 2 · R 1.

Metrics