Abstract

We present an original method to improve the spatial resolution of a Brillouin distributed temperature and strain sensing system (DTSS). This method is shown to substantially improve the spatial resolution, while simultaneously strengthening the Brillouin backscattered light, which is based on the combination of an internal modulation of the laser source and an external modulator to generate two separate light pulses with different central wavelengths and pulse widths. Moreover, a novel Brillouin signal detection method, which we called isogenous heterodyne detection, is introduced, which is equivalent to a heterodyne detection scheme but is only with Rayleigh and Brillouin backscattered light without the need of an extra reference light. These new technical approaches have been incorporated into a fiber optic DTSS with 13km single-mode fiber, which clearly successfully demonstrated all the advantages over conventional DTSS approaches in theory and the feasibility in experiment.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. C. Wait and A. H. Hartog, “Spontaneous Brillouin-based distributed temperature sensor utilizing a fiber Bragg grating notch filter for the separation of the Brillouin signal,” IEEE Photonics Technol. Lett. 13, 508-510 (2001).
    [CrossRef]
  2. P. C. Wai and T. P. Newson, “Landau-Placzek ratio applied to distributed fiber sensing,” Opt. Commun. 122, 141-146(1996).
    [CrossRef]
  3. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9, 979-981 (1997).
    [CrossRef]
  4. H. H. Kee, G. P. Lees, and T. P. Newson, “An all-fiber system for simultaneous interrogation of distributed strain and temperature sensing using spontaneous Brillouin scattering,” Opt. Lett. 25, 695-697 (2000).
    [CrossRef]
  5. G. P. Lees, P. C. Wait, A. Hartog, and T. P. Newson, “Recent advances in distributed optical fiber temperature sensing using the Landau-Placzek ratio,” Proc. SPIE 3541, 292(1999).
    [CrossRef]
  6. M. Song, S. Fan, H. Chen, X. Zhang, and X. Ye, “Study on the technique of Brillouin scattering distributed optical fiber sensing based on optical interferometric heterodyne detection,” Acta Photonica Sin. 34, 233-236 (2005).
  7. A. Sun, B. Chen, J. Chen, G. Li, L. Wang, L. Chang, and Z. Lin, “Detection of Brillouin scattering temperature signal in Brillouin optical time-domain reflectometer sensing system based on instantaneous frequency measurement technology,” Opt. Eng. 46, 124401 (2007).
    [CrossRef]
  8. J. Geng, S. Staines, M. Blake, and S. Jiang, “Distributed fiber temperature and strain sensor using coherent radio-frequency detection of spontaneous Brillouin scattering,” Appl. Opt. 46, 5928-5932 (2007).
    [CrossRef] [PubMed]
  9. S.-B. Cho, Y.-G. Kim, J.-S. Heo, and J.-J. Lee, “Pulse width dependence of Brillouin frequency in single mode optical fibers,” Opt. Express 13, 9472-9479 (2005).
    [CrossRef] [PubMed]
  10. Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photonics Technol. Lett. 19, 1910-1912 (2007).
    [CrossRef]
  11. S.-B. Cho, J.-J. Lee, and I.-B. Kwon, “Strain event detection using a double-pulse technique of a Brillouin scattering-based distributed optical fiber sensor,” Opt. Express 12, 4339-4346(2004).
    [CrossRef] [PubMed]

2007

A. Sun, B. Chen, J. Chen, G. Li, L. Wang, L. Chang, and Z. Lin, “Detection of Brillouin scattering temperature signal in Brillouin optical time-domain reflectometer sensing system based on instantaneous frequency measurement technology,” Opt. Eng. 46, 124401 (2007).
[CrossRef]

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photonics Technol. Lett. 19, 1910-1912 (2007).
[CrossRef]

J. Geng, S. Staines, M. Blake, and S. Jiang, “Distributed fiber temperature and strain sensor using coherent radio-frequency detection of spontaneous Brillouin scattering,” Appl. Opt. 46, 5928-5932 (2007).
[CrossRef] [PubMed]

2005

S.-B. Cho, Y.-G. Kim, J.-S. Heo, and J.-J. Lee, “Pulse width dependence of Brillouin frequency in single mode optical fibers,” Opt. Express 13, 9472-9479 (2005).
[CrossRef] [PubMed]

M. Song, S. Fan, H. Chen, X. Zhang, and X. Ye, “Study on the technique of Brillouin scattering distributed optical fiber sensing based on optical interferometric heterodyne detection,” Acta Photonica Sin. 34, 233-236 (2005).

2004

2001

P. C. Wait and A. H. Hartog, “Spontaneous Brillouin-based distributed temperature sensor utilizing a fiber Bragg grating notch filter for the separation of the Brillouin signal,” IEEE Photonics Technol. Lett. 13, 508-510 (2001).
[CrossRef]

2000

1999

G. P. Lees, P. C. Wait, A. Hartog, and T. P. Newson, “Recent advances in distributed optical fiber temperature sensing using the Landau-Placzek ratio,” Proc. SPIE 3541, 292(1999).
[CrossRef]

1997

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9, 979-981 (1997).
[CrossRef]

1996

P. C. Wai and T. P. Newson, “Landau-Placzek ratio applied to distributed fiber sensing,” Opt. Commun. 122, 141-146(1996).
[CrossRef]

Adachi, S.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photonics Technol. Lett. 19, 1910-1912 (2007).
[CrossRef]

Blake, M.

Chang, L.

A. Sun, B. Chen, J. Chen, G. Li, L. Wang, L. Chang, and Z. Lin, “Detection of Brillouin scattering temperature signal in Brillouin optical time-domain reflectometer sensing system based on instantaneous frequency measurement technology,” Opt. Eng. 46, 124401 (2007).
[CrossRef]

Chen, B.

A. Sun, B. Chen, J. Chen, G. Li, L. Wang, L. Chang, and Z. Lin, “Detection of Brillouin scattering temperature signal in Brillouin optical time-domain reflectometer sensing system based on instantaneous frequency measurement technology,” Opt. Eng. 46, 124401 (2007).
[CrossRef]

Chen, H.

M. Song, S. Fan, H. Chen, X. Zhang, and X. Ye, “Study on the technique of Brillouin scattering distributed optical fiber sensing based on optical interferometric heterodyne detection,” Acta Photonica Sin. 34, 233-236 (2005).

Chen, J.

A. Sun, B. Chen, J. Chen, G. Li, L. Wang, L. Chang, and Z. Lin, “Detection of Brillouin scattering temperature signal in Brillouin optical time-domain reflectometer sensing system based on instantaneous frequency measurement technology,” Opt. Eng. 46, 124401 (2007).
[CrossRef]

Cho, S.-B.

Fan, S.

M. Song, S. Fan, H. Chen, X. Zhang, and X. Ye, “Study on the technique of Brillouin scattering distributed optical fiber sensing based on optical interferometric heterodyne detection,” Acta Photonica Sin. 34, 233-236 (2005).

Farhadiroushan, M.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9, 979-981 (1997).
[CrossRef]

Geng, J.

Handerek, V. A.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9, 979-981 (1997).
[CrossRef]

Hartog, A.

G. P. Lees, P. C. Wait, A. Hartog, and T. P. Newson, “Recent advances in distributed optical fiber temperature sensing using the Landau-Placzek ratio,” Proc. SPIE 3541, 292(1999).
[CrossRef]

Hartog, A. H.

P. C. Wait and A. H. Hartog, “Spontaneous Brillouin-based distributed temperature sensor utilizing a fiber Bragg grating notch filter for the separation of the Brillouin signal,” IEEE Photonics Technol. Lett. 13, 508-510 (2001).
[CrossRef]

Heo, J.-S.

Jiang, S.

Kee, H. H.

Kim, Y.-G.

Koyamada, Y.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photonics Technol. Lett. 19, 1910-1912 (2007).
[CrossRef]

Kwon, I.-B.

Lee, J.-J.

Lees, G. P.

H. H. Kee, G. P. Lees, and T. P. Newson, “An all-fiber system for simultaneous interrogation of distributed strain and temperature sensing using spontaneous Brillouin scattering,” Opt. Lett. 25, 695-697 (2000).
[CrossRef]

G. P. Lees, P. C. Wait, A. Hartog, and T. P. Newson, “Recent advances in distributed optical fiber temperature sensing using the Landau-Placzek ratio,” Proc. SPIE 3541, 292(1999).
[CrossRef]

Li, G.

A. Sun, B. Chen, J. Chen, G. Li, L. Wang, L. Chang, and Z. Lin, “Detection of Brillouin scattering temperature signal in Brillouin optical time-domain reflectometer sensing system based on instantaneous frequency measurement technology,” Opt. Eng. 46, 124401 (2007).
[CrossRef]

Lin, Z.

A. Sun, B. Chen, J. Chen, G. Li, L. Wang, L. Chang, and Z. Lin, “Detection of Brillouin scattering temperature signal in Brillouin optical time-domain reflectometer sensing system based on instantaneous frequency measurement technology,” Opt. Eng. 46, 124401 (2007).
[CrossRef]

Newson, T. P.

H. H. Kee, G. P. Lees, and T. P. Newson, “An all-fiber system for simultaneous interrogation of distributed strain and temperature sensing using spontaneous Brillouin scattering,” Opt. Lett. 25, 695-697 (2000).
[CrossRef]

G. P. Lees, P. C. Wait, A. Hartog, and T. P. Newson, “Recent advances in distributed optical fiber temperature sensing using the Landau-Placzek ratio,” Proc. SPIE 3541, 292(1999).
[CrossRef]

P. C. Wai and T. P. Newson, “Landau-Placzek ratio applied to distributed fiber sensing,” Opt. Commun. 122, 141-146(1996).
[CrossRef]

Parker, T. R.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9, 979-981 (1997).
[CrossRef]

Rogers, A. J.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9, 979-981 (1997).
[CrossRef]

Sakairi, Y.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photonics Technol. Lett. 19, 1910-1912 (2007).
[CrossRef]

Song, M.

M. Song, S. Fan, H. Chen, X. Zhang, and X. Ye, “Study on the technique of Brillouin scattering distributed optical fiber sensing based on optical interferometric heterodyne detection,” Acta Photonica Sin. 34, 233-236 (2005).

Staines, S.

Sun, A.

A. Sun, B. Chen, J. Chen, G. Li, L. Wang, L. Chang, and Z. Lin, “Detection of Brillouin scattering temperature signal in Brillouin optical time-domain reflectometer sensing system based on instantaneous frequency measurement technology,” Opt. Eng. 46, 124401 (2007).
[CrossRef]

Takeuchi, N.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photonics Technol. Lett. 19, 1910-1912 (2007).
[CrossRef]

Wai, P. C.

P. C. Wai and T. P. Newson, “Landau-Placzek ratio applied to distributed fiber sensing,” Opt. Commun. 122, 141-146(1996).
[CrossRef]

Wait, P. C.

P. C. Wait and A. H. Hartog, “Spontaneous Brillouin-based distributed temperature sensor utilizing a fiber Bragg grating notch filter for the separation of the Brillouin signal,” IEEE Photonics Technol. Lett. 13, 508-510 (2001).
[CrossRef]

G. P. Lees, P. C. Wait, A. Hartog, and T. P. Newson, “Recent advances in distributed optical fiber temperature sensing using the Landau-Placzek ratio,” Proc. SPIE 3541, 292(1999).
[CrossRef]

Wang, L.

A. Sun, B. Chen, J. Chen, G. Li, L. Wang, L. Chang, and Z. Lin, “Detection of Brillouin scattering temperature signal in Brillouin optical time-domain reflectometer sensing system based on instantaneous frequency measurement technology,” Opt. Eng. 46, 124401 (2007).
[CrossRef]

Ye, X.

M. Song, S. Fan, H. Chen, X. Zhang, and X. Ye, “Study on the technique of Brillouin scattering distributed optical fiber sensing based on optical interferometric heterodyne detection,” Acta Photonica Sin. 34, 233-236 (2005).

Zhang, X.

M. Song, S. Fan, H. Chen, X. Zhang, and X. Ye, “Study on the technique of Brillouin scattering distributed optical fiber sensing based on optical interferometric heterodyne detection,” Acta Photonica Sin. 34, 233-236 (2005).

Acta Photonica Sin.

M. Song, S. Fan, H. Chen, X. Zhang, and X. Ye, “Study on the technique of Brillouin scattering distributed optical fiber sensing based on optical interferometric heterodyne detection,” Acta Photonica Sin. 34, 233-236 (2005).

Appl. Opt.

IEEE Photonics Technol. Lett.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photonics Technol. Lett. 19, 1910-1912 (2007).
[CrossRef]

P. C. Wait and A. H. Hartog, “Spontaneous Brillouin-based distributed temperature sensor utilizing a fiber Bragg grating notch filter for the separation of the Brillouin signal,” IEEE Photonics Technol. Lett. 13, 508-510 (2001).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9, 979-981 (1997).
[CrossRef]

Opt. Commun.

P. C. Wai and T. P. Newson, “Landau-Placzek ratio applied to distributed fiber sensing,” Opt. Commun. 122, 141-146(1996).
[CrossRef]

Opt. Eng.

A. Sun, B. Chen, J. Chen, G. Li, L. Wang, L. Chang, and Z. Lin, “Detection of Brillouin scattering temperature signal in Brillouin optical time-domain reflectometer sensing system based on instantaneous frequency measurement technology,” Opt. Eng. 46, 124401 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

G. P. Lees, P. C. Wait, A. Hartog, and T. P. Newson, “Recent advances in distributed optical fiber temperature sensing using the Landau-Placzek ratio,” Proc. SPIE 3541, 292(1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Laser’s and modulator’s controller timing diagram.

Fig. 2
Fig. 2

Backscattered light spectrum in single-mode fiber.

Fig. 3
Fig. 3

Experiment setup.

Fig. 4
Fig. 4

Spectrum on the spectrum analyzer.

Fig. 5
Fig. 5

13 km SMF test setup.

Fig. 6
Fig. 6

Oscilloscope display.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T = 2 L v = 2 × 13 × 10 3 2 × 10 8 = 13 × 10 5 s = 130 μs ,
E R ( t ) = E R cos ( w R t + ϕ R ) ,
E B ( t ) = E B cos ( w B t + ϕ B ) ,
i = α [ E R ( t ) + E B ( t ) ] 2 = α { [ E R cos ( ω R t + ϕ R ) ] 2 + [ E B cos ( ω B t + ϕ B ) ] 2 + E R E B cos [ ( ω R ω B ) t + ( ϕ R ϕ B ) ] + E R E B cos [ ( ω R + ω B ) t + ( ϕ R + ϕ B ) ] } ,
i = α { E R 2 2 + E B 2 2 + E R E B cos [ ( ω R ω B ) t + ( ϕ R ϕ B ) ] } .

Metrics