Abstract

Surface plasmon resonance (SPR) sensing is an optical technique that allows real time detection of small changes in the physical properties, in particular in the refractive index, of a dielectric medium near a metal film surface. One way to increase the SPR signal shift is then to incorporate a substance possessing a strong dispersive refractive index in the range of the plasmon resonance band. In this paper, we investigate the impact of materials possessing a strong dispersive index integrated to the dielectric medium on the SPR reflectivity profile. We present theoretical results based on chromophore absorption spectra and on their associated refractive index obtained from the Lorentz approach and Kramers– Krönig equations. As predicted by the theory, the experimental results show an enhancement of the SPR response, maximized when the chromophore absorption band coincides with the plasmon resonant wavelength. This shows that chromophores labeling can provide a potential way for SPR response enhancement.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Mannelli, V. Courtois, P. Lecaruyer, G. Roger, M. C. Millot, M. Goosens, and M. Canva, “Surface plasmon resonance imaging (SPRI) system and real-time monitoring of DNA biochip for human genetic mutation diagnosis of DNA ampllified samples,” Sens. Actuators B 119, 583-591 (2006).
  2. J. Spadavecchia, M. G. Manera, F. Quaranta, P. Siciliano, and R. Rella, “Surface plasmon resonance imaging of DNA based biosensors for potential applications in food analysis,” Biosens. Bioelectron. 21, 894-900 (2005).
    [CrossRef]
  3. M. G. Manera, J. Spadavecchia, A. Leone, F. Quaranta, R. Rella, D. Dell'atti, M. Minunni, M. Mascini, and P. Siciliano, “Surface plasmon resonance imaging technique for nucleic acid detection,” Sens. Actuators B 130, 82-87 (2008).
  4. M. Kim, K. Park., E. J. Jeong, Y. B. Shin, and B. H. Chung, “Surface plasmon resonance imaging analysis of protein-protein interactions using on-chip-expressed capture protein,” Anal. Biochem. 351, 298-304 (2006).
    [CrossRef]
  5. T. Mori, K. Inamori, Y. Inoue, X. Han, G. Yamanouchi, T. Niidome, and Y. Katayama, “Evaluation of protein kinase activities of cell lysates using peptide microarrays based on surface plasmon resonance imaging,” Anal. Biochem. 375, 223-231 (2008).
    [CrossRef]
  6. J. S. Yuk, H. S. Kim, J. W. Jung, S. H. Jung, S. J. Lee, W. J. Kimb, J. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging,” Biosens. Bioelectron. 21, 1521-1528 (2006).
    [CrossRef]
  7. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch 23, 2135-2136 (1968).
  8. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462-493(2008).
    [CrossRef]
  9. H. Komatsu, M. Miyachi, E. Fujii, D. Citterio, K. Yamada, Y. Sato, K. Kurihara, H. Kawaguchi, and K. Suzuki, “SPR sensor signal amplification based on dye-doped polymer particles,” Sci. Tech. Adv. Mater. 7, 150-155 (2006).
  10. K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, “An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode membrane,” Anal. Chem. 74, 6323-6333 (2002).
    [CrossRef]
  11. S. Wang, S. Boussad, and N. J. Tao, “Surface plasmon resonance enhanced optical absorption spectroscopy for studying molecular adsorbates,” Rev. Sci. Instrum. 72, 3055-3060(2001).
    [CrossRef]
  12. A. A. Kolomenskii, P. D. Gershon, and A. Schuessler, “Surface-plasmon resonance spectrometry and characterization of absorbing liquids,” Appl. Opt. 39, 3314-3320 (2000).
    [CrossRef]
  13. A. Hanning, J. Roeraade, J. J. Delrow, and R. C. Jorgenson, “Enhanced sensitivity of wavelength modulated surface plasmon resonance devices using dispersion from a dye solution,” Sens. Actuators B 54, 25-36 (1999).
  14. C. Bonnand, J. Bellesa, and J. C. Plénet, “Study of strong coupling between surface plasmon and exciton in an organic semiconductor,” J. Non-Cryst. Solids 352, 1683-1685 (2006).
  15. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves),” J. Opt. Soc. Am. 31, 213-222 (1941).
  16. A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398-410(1968).
  17. P. Lecaruyer, I. Mannelli, V. Courtois, M. Goossens, and M. Canva, “Surface plasmon resonance imaging as a multidimensional surface characterization instrument: application to biochip genotyping,” Anal. Chim. Acta 573-574, 333-340(2006).
    [CrossRef]
  18. P. Lecaruyer, E. Maillart, M. Canva, and J. Rolland, “Generalization of the Rouard method to an absorbing thin-film stack and application to surface plasmon resonance,” Appl. Opt. 45, 8419-8423 (2006).
    [CrossRef]
  19. P. Lecaruyer, M. Canva, and J. Rolland, “Metallic film optimization in a surface plasmon resonance biosensor by the extended Rouard method,” Appl. Opt. 46, 2361-2369 (2007).
    [CrossRef]
  20. http://www.tsukasa-co.jp/product/optics/documents/CVI_Appendix.pdf.
  21. http://unicorn.ps.uci.edu/calculations/fresnel/audata.txt.
  22. http://www.sopra-sa.com/index2.php?goto=d1&rub=4.
  23. S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539-5543 (2004).
    [CrossRef]
  24. http://www.eurogentec.com/EGT/files/Oligonucleotides.pdf.
  25. P. Prêtre, L.-M. Wu, A. Knoesen, and J. D Swalen, “Optical properties of nonlinear polymers: a method for calculation,” J. Opt. Soc. Am. 15, 359-368 (1998).
  26. home.earthlink.net/~fluorescentdyes/McNamara2007FluorophoresTable.xls.

2008 (3)

M. G. Manera, J. Spadavecchia, A. Leone, F. Quaranta, R. Rella, D. Dell'atti, M. Minunni, M. Mascini, and P. Siciliano, “Surface plasmon resonance imaging technique for nucleic acid detection,” Sens. Actuators B 130, 82-87 (2008).

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462-493(2008).
[CrossRef]

T. Mori, K. Inamori, Y. Inoue, X. Han, G. Yamanouchi, T. Niidome, and Y. Katayama, “Evaluation of protein kinase activities of cell lysates using peptide microarrays based on surface plasmon resonance imaging,” Anal. Biochem. 375, 223-231 (2008).
[CrossRef]

2007 (1)

2006 (7)

P. Lecaruyer, E. Maillart, M. Canva, and J. Rolland, “Generalization of the Rouard method to an absorbing thin-film stack and application to surface plasmon resonance,” Appl. Opt. 45, 8419-8423 (2006).
[CrossRef]

J. S. Yuk, H. S. Kim, J. W. Jung, S. H. Jung, S. J. Lee, W. J. Kimb, J. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging,” Biosens. Bioelectron. 21, 1521-1528 (2006).
[CrossRef]

P. Lecaruyer, I. Mannelli, V. Courtois, M. Goossens, and M. Canva, “Surface plasmon resonance imaging as a multidimensional surface characterization instrument: application to biochip genotyping,” Anal. Chim. Acta 573-574, 333-340(2006).
[CrossRef]

C. Bonnand, J. Bellesa, and J. C. Plénet, “Study of strong coupling between surface plasmon and exciton in an organic semiconductor,” J. Non-Cryst. Solids 352, 1683-1685 (2006).

H. Komatsu, M. Miyachi, E. Fujii, D. Citterio, K. Yamada, Y. Sato, K. Kurihara, H. Kawaguchi, and K. Suzuki, “SPR sensor signal amplification based on dye-doped polymer particles,” Sci. Tech. Adv. Mater. 7, 150-155 (2006).

M. Kim, K. Park., E. J. Jeong, Y. B. Shin, and B. H. Chung, “Surface plasmon resonance imaging analysis of protein-protein interactions using on-chip-expressed capture protein,” Anal. Biochem. 351, 298-304 (2006).
[CrossRef]

I. Mannelli, V. Courtois, P. Lecaruyer, G. Roger, M. C. Millot, M. Goosens, and M. Canva, “Surface plasmon resonance imaging (SPRI) system and real-time monitoring of DNA biochip for human genetic mutation diagnosis of DNA ampllified samples,” Sens. Actuators B 119, 583-591 (2006).

2005 (1)

J. Spadavecchia, M. G. Manera, F. Quaranta, P. Siciliano, and R. Rella, “Surface plasmon resonance imaging of DNA based biosensors for potential applications in food analysis,” Biosens. Bioelectron. 21, 894-900 (2005).
[CrossRef]

2004 (1)

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539-5543 (2004).
[CrossRef]

2002 (1)

K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, “An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode membrane,” Anal. Chem. 74, 6323-6333 (2002).
[CrossRef]

2001 (1)

S. Wang, S. Boussad, and N. J. Tao, “Surface plasmon resonance enhanced optical absorption spectroscopy for studying molecular adsorbates,” Rev. Sci. Instrum. 72, 3055-3060(2001).
[CrossRef]

2000 (1)

1999 (1)

A. Hanning, J. Roeraade, J. J. Delrow, and R. C. Jorgenson, “Enhanced sensitivity of wavelength modulated surface plasmon resonance devices using dispersion from a dye solution,” Sens. Actuators B 54, 25-36 (1999).

1998 (1)

1968 (2)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch 23, 2135-2136 (1968).

A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398-410(1968).

1941 (1)

Bellesa, J.

C. Bonnand, J. Bellesa, and J. C. Plénet, “Study of strong coupling between surface plasmon and exciton in an organic semiconductor,” J. Non-Cryst. Solids 352, 1683-1685 (2006).

Bonnand, C.

C. Bonnand, J. Bellesa, and J. C. Plénet, “Study of strong coupling between surface plasmon and exciton in an organic semiconductor,” J. Non-Cryst. Solids 352, 1683-1685 (2006).

Boussad, S.

S. Wang, S. Boussad, and N. J. Tao, “Surface plasmon resonance enhanced optical absorption spectroscopy for studying molecular adsorbates,” Rev. Sci. Instrum. 72, 3055-3060(2001).
[CrossRef]

Canva, M.

P. Lecaruyer, M. Canva, and J. Rolland, “Metallic film optimization in a surface plasmon resonance biosensor by the extended Rouard method,” Appl. Opt. 46, 2361-2369 (2007).
[CrossRef]

P. Lecaruyer, E. Maillart, M. Canva, and J. Rolland, “Generalization of the Rouard method to an absorbing thin-film stack and application to surface plasmon resonance,” Appl. Opt. 45, 8419-8423 (2006).
[CrossRef]

P. Lecaruyer, I. Mannelli, V. Courtois, M. Goossens, and M. Canva, “Surface plasmon resonance imaging as a multidimensional surface characterization instrument: application to biochip genotyping,” Anal. Chim. Acta 573-574, 333-340(2006).
[CrossRef]

I. Mannelli, V. Courtois, P. Lecaruyer, G. Roger, M. C. Millot, M. Goosens, and M. Canva, “Surface plasmon resonance imaging (SPRI) system and real-time monitoring of DNA biochip for human genetic mutation diagnosis of DNA ampllified samples,” Sens. Actuators B 119, 583-591 (2006).

Chung, B. H.

M. Kim, K. Park., E. J. Jeong, Y. B. Shin, and B. H. Chung, “Surface plasmon resonance imaging analysis of protein-protein interactions using on-chip-expressed capture protein,” Anal. Biochem. 351, 298-304 (2006).
[CrossRef]

Citterio, D.

H. Komatsu, M. Miyachi, E. Fujii, D. Citterio, K. Yamada, Y. Sato, K. Kurihara, H. Kawaguchi, and K. Suzuki, “SPR sensor signal amplification based on dye-doped polymer particles,” Sci. Tech. Adv. Mater. 7, 150-155 (2006).

Courtois, V.

I. Mannelli, V. Courtois, P. Lecaruyer, G. Roger, M. C. Millot, M. Goosens, and M. Canva, “Surface plasmon resonance imaging (SPRI) system and real-time monitoring of DNA biochip for human genetic mutation diagnosis of DNA ampllified samples,” Sens. Actuators B 119, 583-591 (2006).

P. Lecaruyer, I. Mannelli, V. Courtois, M. Goossens, and M. Canva, “Surface plasmon resonance imaging as a multidimensional surface characterization instrument: application to biochip genotyping,” Anal. Chim. Acta 573-574, 333-340(2006).
[CrossRef]

Dell'atti, D.

M. G. Manera, J. Spadavecchia, A. Leone, F. Quaranta, R. Rella, D. Dell'atti, M. Minunni, M. Mascini, and P. Siciliano, “Surface plasmon resonance imaging technique for nucleic acid detection,” Sens. Actuators B 130, 82-87 (2008).

Delrow, J. J.

A. Hanning, J. Roeraade, J. J. Delrow, and R. C. Jorgenson, “Enhanced sensitivity of wavelength modulated surface plasmon resonance devices using dispersion from a dye solution,” Sens. Actuators B 54, 25-36 (1999).

Elhadj, S.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539-5543 (2004).
[CrossRef]

Fano, U.

Fujii, E.

H. Komatsu, M. Miyachi, E. Fujii, D. Citterio, K. Yamada, Y. Sato, K. Kurihara, H. Kawaguchi, and K. Suzuki, “SPR sensor signal amplification based on dye-doped polymer particles,” Sci. Tech. Adv. Mater. 7, 150-155 (2006).

Gershon, P. D.

Goosens, M.

I. Mannelli, V. Courtois, P. Lecaruyer, G. Roger, M. C. Millot, M. Goosens, and M. Canva, “Surface plasmon resonance imaging (SPRI) system and real-time monitoring of DNA biochip for human genetic mutation diagnosis of DNA ampllified samples,” Sens. Actuators B 119, 583-591 (2006).

Goossens, M.

P. Lecaruyer, I. Mannelli, V. Courtois, M. Goossens, and M. Canva, “Surface plasmon resonance imaging as a multidimensional surface characterization instrument: application to biochip genotyping,” Anal. Chim. Acta 573-574, 333-340(2006).
[CrossRef]

Ha, K. S.

J. S. Yuk, H. S. Kim, J. W. Jung, S. H. Jung, S. J. Lee, W. J. Kimb, J. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging,” Biosens. Bioelectron. 21, 1521-1528 (2006).
[CrossRef]

Han, J.

J. S. Yuk, H. S. Kim, J. W. Jung, S. H. Jung, S. J. Lee, W. J. Kimb, J. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging,” Biosens. Bioelectron. 21, 1521-1528 (2006).
[CrossRef]

Han, X.

T. Mori, K. Inamori, Y. Inoue, X. Han, G. Yamanouchi, T. Niidome, and Y. Katayama, “Evaluation of protein kinase activities of cell lysates using peptide microarrays based on surface plasmon resonance imaging,” Anal. Biochem. 375, 223-231 (2008).
[CrossRef]

Hanning, A.

A. Hanning, J. Roeraade, J. J. Delrow, and R. C. Jorgenson, “Enhanced sensitivity of wavelength modulated surface plasmon resonance devices using dispersion from a dye solution,” Sens. Actuators B 54, 25-36 (1999).

Hirayama, E.

K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, “An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode membrane,” Anal. Chem. 74, 6323-6333 (2002).
[CrossRef]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462-493(2008).
[CrossRef]

Inamori, K.

T. Mori, K. Inamori, Y. Inoue, X. Han, G. Yamanouchi, T. Niidome, and Y. Katayama, “Evaluation of protein kinase activities of cell lysates using peptide microarrays based on surface plasmon resonance imaging,” Anal. Biochem. 375, 223-231 (2008).
[CrossRef]

Inoue, Y.

T. Mori, K. Inamori, Y. Inoue, X. Han, G. Yamanouchi, T. Niidome, and Y. Katayama, “Evaluation of protein kinase activities of cell lysates using peptide microarrays based on surface plasmon resonance imaging,” Anal. Biochem. 375, 223-231 (2008).
[CrossRef]

Jeong, E. J.

M. Kim, K. Park., E. J. Jeong, Y. B. Shin, and B. H. Chung, “Surface plasmon resonance imaging analysis of protein-protein interactions using on-chip-expressed capture protein,” Anal. Biochem. 351, 298-304 (2006).
[CrossRef]

Jorgenson, R. C.

A. Hanning, J. Roeraade, J. J. Delrow, and R. C. Jorgenson, “Enhanced sensitivity of wavelength modulated surface plasmon resonance devices using dispersion from a dye solution,” Sens. Actuators B 54, 25-36 (1999).

Jung, J. W.

J. S. Yuk, H. S. Kim, J. W. Jung, S. H. Jung, S. J. Lee, W. J. Kimb, J. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging,” Biosens. Bioelectron. 21, 1521-1528 (2006).
[CrossRef]

Jung, S. H.

J. S. Yuk, H. S. Kim, J. W. Jung, S. H. Jung, S. J. Lee, W. J. Kimb, J. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging,” Biosens. Bioelectron. 21, 1521-1528 (2006).
[CrossRef]

Katayama, Y.

T. Mori, K. Inamori, Y. Inoue, X. Han, G. Yamanouchi, T. Niidome, and Y. Katayama, “Evaluation of protein kinase activities of cell lysates using peptide microarrays based on surface plasmon resonance imaging,” Anal. Biochem. 375, 223-231 (2008).
[CrossRef]

Kawaguchi, H.

H. Komatsu, M. Miyachi, E. Fujii, D. Citterio, K. Yamada, Y. Sato, K. Kurihara, H. Kawaguchi, and K. Suzuki, “SPR sensor signal amplification based on dye-doped polymer particles,” Sci. Tech. Adv. Mater. 7, 150-155 (2006).

Kim, H. S.

J. S. Yuk, H. S. Kim, J. W. Jung, S. H. Jung, S. J. Lee, W. J. Kimb, J. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging,” Biosens. Bioelectron. 21, 1521-1528 (2006).
[CrossRef]

Kim, M.

M. Kim, K. Park., E. J. Jeong, Y. B. Shin, and B. H. Chung, “Surface plasmon resonance imaging analysis of protein-protein interactions using on-chip-expressed capture protein,” Anal. Biochem. 351, 298-304 (2006).
[CrossRef]

Kim, Y. M.

J. S. Yuk, H. S. Kim, J. W. Jung, S. H. Jung, S. J. Lee, W. J. Kimb, J. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging,” Biosens. Bioelectron. 21, 1521-1528 (2006).
[CrossRef]

Kimb, W. J.

J. S. Yuk, H. S. Kim, J. W. Jung, S. H. Jung, S. J. Lee, W. J. Kimb, J. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging,” Biosens. Bioelectron. 21, 1521-1528 (2006).
[CrossRef]

Knoesen, A.

Kolomenskii, A. A.

Komatsu, H.

H. Komatsu, M. Miyachi, E. Fujii, D. Citterio, K. Yamada, Y. Sato, K. Kurihara, H. Kawaguchi, and K. Suzuki, “SPR sensor signal amplification based on dye-doped polymer particles,” Sci. Tech. Adv. Mater. 7, 150-155 (2006).

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch 23, 2135-2136 (1968).

Kurihara, K.

H. Komatsu, M. Miyachi, E. Fujii, D. Citterio, K. Yamada, Y. Sato, K. Kurihara, H. Kawaguchi, and K. Suzuki, “SPR sensor signal amplification based on dye-doped polymer particles,” Sci. Tech. Adv. Mater. 7, 150-155 (2006).

K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, “An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode membrane,” Anal. Chem. 74, 6323-6333 (2002).
[CrossRef]

Lecaruyer, P.

P. Lecaruyer, M. Canva, and J. Rolland, “Metallic film optimization in a surface plasmon resonance biosensor by the extended Rouard method,” Appl. Opt. 46, 2361-2369 (2007).
[CrossRef]

P. Lecaruyer, E. Maillart, M. Canva, and J. Rolland, “Generalization of the Rouard method to an absorbing thin-film stack and application to surface plasmon resonance,” Appl. Opt. 45, 8419-8423 (2006).
[CrossRef]

P. Lecaruyer, I. Mannelli, V. Courtois, M. Goossens, and M. Canva, “Surface plasmon resonance imaging as a multidimensional surface characterization instrument: application to biochip genotyping,” Anal. Chim. Acta 573-574, 333-340(2006).
[CrossRef]

I. Mannelli, V. Courtois, P. Lecaruyer, G. Roger, M. C. Millot, M. Goosens, and M. Canva, “Surface plasmon resonance imaging (SPRI) system and real-time monitoring of DNA biochip for human genetic mutation diagnosis of DNA ampllified samples,” Sens. Actuators B 119, 583-591 (2006).

Lee, S. J.

J. S. Yuk, H. S. Kim, J. W. Jung, S. H. Jung, S. J. Lee, W. J. Kimb, J. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging,” Biosens. Bioelectron. 21, 1521-1528 (2006).
[CrossRef]

Leone, A.

M. G. Manera, J. Spadavecchia, A. Leone, F. Quaranta, R. Rella, D. Dell'atti, M. Minunni, M. Mascini, and P. Siciliano, “Surface plasmon resonance imaging technique for nucleic acid detection,” Sens. Actuators B 130, 82-87 (2008).

Maillart, E.

Manera, M. G.

M. G. Manera, J. Spadavecchia, A. Leone, F. Quaranta, R. Rella, D. Dell'atti, M. Minunni, M. Mascini, and P. Siciliano, “Surface plasmon resonance imaging technique for nucleic acid detection,” Sens. Actuators B 130, 82-87 (2008).

J. Spadavecchia, M. G. Manera, F. Quaranta, P. Siciliano, and R. Rella, “Surface plasmon resonance imaging of DNA based biosensors for potential applications in food analysis,” Biosens. Bioelectron. 21, 894-900 (2005).
[CrossRef]

Mannelli, I.

I. Mannelli, V. Courtois, P. Lecaruyer, G. Roger, M. C. Millot, M. Goosens, and M. Canva, “Surface plasmon resonance imaging (SPRI) system and real-time monitoring of DNA biochip for human genetic mutation diagnosis of DNA ampllified samples,” Sens. Actuators B 119, 583-591 (2006).

P. Lecaruyer, I. Mannelli, V. Courtois, M. Goossens, and M. Canva, “Surface plasmon resonance imaging as a multidimensional surface characterization instrument: application to biochip genotyping,” Anal. Chim. Acta 573-574, 333-340(2006).
[CrossRef]

Mascini, M.

M. G. Manera, J. Spadavecchia, A. Leone, F. Quaranta, R. Rella, D. Dell'atti, M. Minunni, M. Mascini, and P. Siciliano, “Surface plasmon resonance imaging technique for nucleic acid detection,” Sens. Actuators B 130, 82-87 (2008).

Millot, M. C.

I. Mannelli, V. Courtois, P. Lecaruyer, G. Roger, M. C. Millot, M. Goosens, and M. Canva, “Surface plasmon resonance imaging (SPRI) system and real-time monitoring of DNA biochip for human genetic mutation diagnosis of DNA ampllified samples,” Sens. Actuators B 119, 583-591 (2006).

Minunni, M.

M. G. Manera, J. Spadavecchia, A. Leone, F. Quaranta, R. Rella, D. Dell'atti, M. Minunni, M. Mascini, and P. Siciliano, “Surface plasmon resonance imaging technique for nucleic acid detection,” Sens. Actuators B 130, 82-87 (2008).

Miyachi, M.

H. Komatsu, M. Miyachi, E. Fujii, D. Citterio, K. Yamada, Y. Sato, K. Kurihara, H. Kawaguchi, and K. Suzuki, “SPR sensor signal amplification based on dye-doped polymer particles,” Sci. Tech. Adv. Mater. 7, 150-155 (2006).

Mori, T.

T. Mori, K. Inamori, Y. Inoue, X. Han, G. Yamanouchi, T. Niidome, and Y. Katayama, “Evaluation of protein kinase activities of cell lysates using peptide microarrays based on surface plasmon resonance imaging,” Anal. Biochem. 375, 223-231 (2008).
[CrossRef]

Nakamura, K.

K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, “An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode membrane,” Anal. Chem. 74, 6323-6333 (2002).
[CrossRef]

Niidome, T.

T. Mori, K. Inamori, Y. Inoue, X. Han, G. Yamanouchi, T. Niidome, and Y. Katayama, “Evaluation of protein kinase activities of cell lysates using peptide microarrays based on surface plasmon resonance imaging,” Anal. Biochem. 375, 223-231 (2008).
[CrossRef]

Otto, A.

A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398-410(1968).

Park., K.

M. Kim, K. Park., E. J. Jeong, Y. B. Shin, and B. H. Chung, “Surface plasmon resonance imaging analysis of protein-protein interactions using on-chip-expressed capture protein,” Anal. Biochem. 351, 298-304 (2006).
[CrossRef]

Plénet, J. C.

C. Bonnand, J. Bellesa, and J. C. Plénet, “Study of strong coupling between surface plasmon and exciton in an organic semiconductor,” J. Non-Cryst. Solids 352, 1683-1685 (2006).

Prêtre, P.

Quaranta, F.

M. G. Manera, J. Spadavecchia, A. Leone, F. Quaranta, R. Rella, D. Dell'atti, M. Minunni, M. Mascini, and P. Siciliano, “Surface plasmon resonance imaging technique for nucleic acid detection,” Sens. Actuators B 130, 82-87 (2008).

J. Spadavecchia, M. G. Manera, F. Quaranta, P. Siciliano, and R. Rella, “Surface plasmon resonance imaging of DNA based biosensors for potential applications in food analysis,” Biosens. Bioelectron. 21, 894-900 (2005).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch 23, 2135-2136 (1968).

Rella, R.

M. G. Manera, J. Spadavecchia, A. Leone, F. Quaranta, R. Rella, D. Dell'atti, M. Minunni, M. Mascini, and P. Siciliano, “Surface plasmon resonance imaging technique for nucleic acid detection,” Sens. Actuators B 130, 82-87 (2008).

J. Spadavecchia, M. G. Manera, F. Quaranta, P. Siciliano, and R. Rella, “Surface plasmon resonance imaging of DNA based biosensors for potential applications in food analysis,” Biosens. Bioelectron. 21, 894-900 (2005).
[CrossRef]

Roeraade, J.

A. Hanning, J. Roeraade, J. J. Delrow, and R. C. Jorgenson, “Enhanced sensitivity of wavelength modulated surface plasmon resonance devices using dispersion from a dye solution,” Sens. Actuators B 54, 25-36 (1999).

Roger, G.

I. Mannelli, V. Courtois, P. Lecaruyer, G. Roger, M. C. Millot, M. Goosens, and M. Canva, “Surface plasmon resonance imaging (SPRI) system and real-time monitoring of DNA biochip for human genetic mutation diagnosis of DNA ampllified samples,” Sens. Actuators B 119, 583-591 (2006).

Rolland, J.

Saraf, R. F.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539-5543 (2004).
[CrossRef]

Sato, Y.

H. Komatsu, M. Miyachi, E. Fujii, D. Citterio, K. Yamada, Y. Sato, K. Kurihara, H. Kawaguchi, and K. Suzuki, “SPR sensor signal amplification based on dye-doped polymer particles,” Sci. Tech. Adv. Mater. 7, 150-155 (2006).

Schuessler, A.

Shin, Y. B.

M. Kim, K. Park., E. J. Jeong, Y. B. Shin, and B. H. Chung, “Surface plasmon resonance imaging analysis of protein-protein interactions using on-chip-expressed capture protein,” Anal. Biochem. 351, 298-304 (2006).
[CrossRef]

Siciliano, P.

M. G. Manera, J. Spadavecchia, A. Leone, F. Quaranta, R. Rella, D. Dell'atti, M. Minunni, M. Mascini, and P. Siciliano, “Surface plasmon resonance imaging technique for nucleic acid detection,” Sens. Actuators B 130, 82-87 (2008).

J. Spadavecchia, M. G. Manera, F. Quaranta, P. Siciliano, and R. Rella, “Surface plasmon resonance imaging of DNA based biosensors for potential applications in food analysis,” Biosens. Bioelectron. 21, 894-900 (2005).
[CrossRef]

Singh, G.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539-5543 (2004).
[CrossRef]

Spadavecchia, J.

M. G. Manera, J. Spadavecchia, A. Leone, F. Quaranta, R. Rella, D. Dell'atti, M. Minunni, M. Mascini, and P. Siciliano, “Surface plasmon resonance imaging technique for nucleic acid detection,” Sens. Actuators B 130, 82-87 (2008).

J. Spadavecchia, M. G. Manera, F. Quaranta, P. Siciliano, and R. Rella, “Surface plasmon resonance imaging of DNA based biosensors for potential applications in food analysis,” Biosens. Bioelectron. 21, 894-900 (2005).
[CrossRef]

Suzuki, K.

H. Komatsu, M. Miyachi, E. Fujii, D. Citterio, K. Yamada, Y. Sato, K. Kurihara, H. Kawaguchi, and K. Suzuki, “SPR sensor signal amplification based on dye-doped polymer particles,” Sci. Tech. Adv. Mater. 7, 150-155 (2006).

K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, “An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode membrane,” Anal. Chem. 74, 6323-6333 (2002).
[CrossRef]

Swalen, J. D

Tao, N. J.

S. Wang, S. Boussad, and N. J. Tao, “Surface plasmon resonance enhanced optical absorption spectroscopy for studying molecular adsorbates,” Rev. Sci. Instrum. 72, 3055-3060(2001).
[CrossRef]

Wang, S.

S. Wang, S. Boussad, and N. J. Tao, “Surface plasmon resonance enhanced optical absorption spectroscopy for studying molecular adsorbates,” Rev. Sci. Instrum. 72, 3055-3060(2001).
[CrossRef]

Wu, L.-M.

Yamada, K.

H. Komatsu, M. Miyachi, E. Fujii, D. Citterio, K. Yamada, Y. Sato, K. Kurihara, H. Kawaguchi, and K. Suzuki, “SPR sensor signal amplification based on dye-doped polymer particles,” Sci. Tech. Adv. Mater. 7, 150-155 (2006).

Yamanouchi, G.

T. Mori, K. Inamori, Y. Inoue, X. Han, G. Yamanouchi, T. Niidome, and Y. Katayama, “Evaluation of protein kinase activities of cell lysates using peptide microarrays based on surface plasmon resonance imaging,” Anal. Biochem. 375, 223-231 (2008).
[CrossRef]

Yuk, J. S.

J. S. Yuk, H. S. Kim, J. W. Jung, S. H. Jung, S. J. Lee, W. J. Kimb, J. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging,” Biosens. Bioelectron. 21, 1521-1528 (2006).
[CrossRef]

Anal. Biochem. (2)

M. Kim, K. Park., E. J. Jeong, Y. B. Shin, and B. H. Chung, “Surface plasmon resonance imaging analysis of protein-protein interactions using on-chip-expressed capture protein,” Anal. Biochem. 351, 298-304 (2006).
[CrossRef]

T. Mori, K. Inamori, Y. Inoue, X. Han, G. Yamanouchi, T. Niidome, and Y. Katayama, “Evaluation of protein kinase activities of cell lysates using peptide microarrays based on surface plasmon resonance imaging,” Anal. Biochem. 375, 223-231 (2008).
[CrossRef]

Anal. Chem. (1)

K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, “An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode membrane,” Anal. Chem. 74, 6323-6333 (2002).
[CrossRef]

Anal. Chim. Acta (1)

P. Lecaruyer, I. Mannelli, V. Courtois, M. Goossens, and M. Canva, “Surface plasmon resonance imaging as a multidimensional surface characterization instrument: application to biochip genotyping,” Anal. Chim. Acta 573-574, 333-340(2006).
[CrossRef]

Appl. Opt. (3)

Biosens. Bioelectron. (2)

J. S. Yuk, H. S. Kim, J. W. Jung, S. H. Jung, S. J. Lee, W. J. Kimb, J. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging,” Biosens. Bioelectron. 21, 1521-1528 (2006).
[CrossRef]

J. Spadavecchia, M. G. Manera, F. Quaranta, P. Siciliano, and R. Rella, “Surface plasmon resonance imaging of DNA based biosensors for potential applications in food analysis,” Biosens. Bioelectron. 21, 894-900 (2005).
[CrossRef]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462-493(2008).
[CrossRef]

J. Non-Cryst. Solids (1)

C. Bonnand, J. Bellesa, and J. C. Plénet, “Study of strong coupling between surface plasmon and exciton in an organic semiconductor,” J. Non-Cryst. Solids 352, 1683-1685 (2006).

J. Opt. Soc. Am. (2)

Langmuir (1)

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539-5543 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Wang, S. Boussad, and N. J. Tao, “Surface plasmon resonance enhanced optical absorption spectroscopy for studying molecular adsorbates,” Rev. Sci. Instrum. 72, 3055-3060(2001).
[CrossRef]

Sci. Tech. Adv. Mater. (1)

H. Komatsu, M. Miyachi, E. Fujii, D. Citterio, K. Yamada, Y. Sato, K. Kurihara, H. Kawaguchi, and K. Suzuki, “SPR sensor signal amplification based on dye-doped polymer particles,” Sci. Tech. Adv. Mater. 7, 150-155 (2006).

Sens. Actuators B (3)

M. G. Manera, J. Spadavecchia, A. Leone, F. Quaranta, R. Rella, D. Dell'atti, M. Minunni, M. Mascini, and P. Siciliano, “Surface plasmon resonance imaging technique for nucleic acid detection,” Sens. Actuators B 130, 82-87 (2008).

I. Mannelli, V. Courtois, P. Lecaruyer, G. Roger, M. C. Millot, M. Goosens, and M. Canva, “Surface plasmon resonance imaging (SPRI) system and real-time monitoring of DNA biochip for human genetic mutation diagnosis of DNA ampllified samples,” Sens. Actuators B 119, 583-591 (2006).

A. Hanning, J. Roeraade, J. J. Delrow, and R. C. Jorgenson, “Enhanced sensitivity of wavelength modulated surface plasmon resonance devices using dispersion from a dye solution,” Sens. Actuators B 54, 25-36 (1999).

Z. Naturforsch (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch 23, 2135-2136 (1968).

Z. Phys. (1)

A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398-410(1968).

Other (5)

http://www.eurogentec.com/EGT/files/Oligonucleotides.pdf.

http://www.tsukasa-co.jp/product/optics/documents/CVI_Appendix.pdf.

http://unicorn.ps.uci.edu/calculations/fresnel/audata.txt.

http://www.sopra-sa.com/index2.php?goto=d1&rub=4.

home.earthlink.net/~fluorescentdyes/McNamara2007FluorophoresTable.xls.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic representation of the probe functionalization and of the biomolecule hybridization with and without labels. The different layers are represented by 1, prism; 2, gold; 3 0 , dielectric=probe layer ; 3 1 , 3 0 + target ; 3 2 , 3 0 + target + chromophore ; and 4, semi-infinite buffer solution.

Fig. 2
Fig. 2

(a) Plasmon spectrum before (solid curve) and after (dashed curve) the functionalization of the probe. (b) Reflectivity variation after the functionalization of the probe molecule on the surface. The solid and the dashed lines are the experimental and the theoretical responses, respectively.

Fig. 3
Fig. 3

Dispersion spectra of the Rh, Cy3, TR, and Cy5 chromophores: (a) absorption spectra and (b) SPR reflectivity after interaction with target molecules without label, with Rh, Cy3, TR, and Cy5 in a SF11/chromium/gold/dielectric/water Kretschmann configuration. (c) Calculated variation of the refractive index. (d) Differential SPR reflectivity obtained by subtracting reflectivity curves before and after interaction. The SPR curves have been calculated for an external incident angle of 36 ° 24 on the prism.

Fig. 4
Fig. 4

Experimental setup of the spectral mono channel sensor.

Fig. 5
Fig. 5

(a) Reflectivity variation spectra after interaction with DNA target, without label, with Cy3, TR, Rh, and with Cy5. The reflectivity spectra are compared with the spectrum before interaction. (b) Reaction kinetic at maximum reflectivity variation at 652 nm of the target labeled with Cy5 and at 642 nm of target without label, labeled with Cy3, TR, and Rh.

Tables (2)

Tables Icon

Table 1 Chromophore Spectral Absorption Parameters used in the Simulation

Tables Icon

Table 2 Molecular Weight of the Probe and Targets Involved in the Interaction

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n prism sin θ prism / dielectric > n dielectric .
K SPR ( ω ) = Re ( ε m ( ω ) ε d ( ω ) ε m ( ω ) + ε d ( ω ) ) ω c ,
K x = ω c n prism ( ω ) sin θ ,
ε d = ε bulk + 1 α d [ ω p 2 α 1 1 ( ω 1 2 - ω 2 - i ω γ 1 ) + ω p 2 α 2 1 ( ω 2 2 - ω 2 - i ω γ 2 ) ] ,

Metrics